Comparison of Convolutional Neural Network Architectures for COVID-19 Diagnosis

被引:0
|
作者
Lopez-Betancur, Daniela [1 ]
Bosco Duran, Rembrandt [2 ]
Guerrero-Mendez, Carlos [3 ]
Zambrano Rodriguez, Rogelia [4 ]
Saucedo Anaya, Tonatiuh [3 ]
机构
[1] Univ Politecn Aguascalientes, Direcc Posgrad & Invest, Aguascalientes, Aguascalientes, Mexico
[2] Univ Autonoma Zacatecas, Unidad Acad Fis, Zacatecas, Zacatecas, Mexico
[3] Univ Autonoma Zacatecas, Unidad Acad Ciencia & Tecnol Luz & Mat, Zacatecas, Zacatecas, Mexico
[4] Univ Autonoma Zacatecas, Unidad Acad Contaduria & Adm, Zacatecas, Zacatecas, Mexico
来源
COMPUTACION Y SISTEMAS | 2021年 / 25卷 / 03期
关键词
Convolutional neural network; COVID-19; Transfer learning; SKIN-CANCER; CLASSIFICATION; IMAGES; TUMOR; CNN;
D O I
10.13053/CyS-25-3-3453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) have shown great potential to solve several medical image classification problems. In this research, thirty-two CNN architectures were evaluated and compared to perform COVID-19 diagnosis by using radiographic images. A collection of 5,953 frontal chest X-ray images (117 patients diagnosed with COVID-19, 4,273 with Pneumonia not related to COVID-19, and 1,563 Normal or healthy) was used for training and testing those thirty-two architectures. In this article, the implemented metrics were according to the conditions of an imbalanced dataset. Seven of the thirty-two models evaluated achieved an excellent performance classification (>= 90%) according to the Index of Balanced Accuracy (IBA) metric. The top three CNN models selected in this research (Wide_resnet101_2, Resnext101_32x8d, and Resnext50_32x4d) obtained the highest classification precision value of 97.75%. The overfitting problem was ruled out according to the evolution of the training and testing precision measurement. The best CNN model for COVID-19 diagnosis is the Resnext101_32x8d according to the confusion matrix and the metrics achieved (sensitivity, specificity, F1-score, G_mean, IBA, and training time of 97.75%, 96.40%, 97.75%, 97.06%, 94.34%, 76.98 min, respectively) by the CNN model.
引用
收藏
页码:601 / 615
页数:15
相关论文
共 50 条
  • [11] Performance Comparison of Different Convolutional Neural Network Models for the Detection of COVID-19
    Kogilavani, S., V
    Sandhiya, R.
    Malliga, S.
    PROCEEDINGS OF 7TH INTERNATIONAL CONFERENCE ON HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS (ICHSA 2022), 2022, 140 : 413 - 425
  • [12] An Enhanced Convolutional Neural Network for COVID-19 Detection
    Al-Janabi, Sameer I. Ali
    Al-Khateeb, Belal
    Mahmood, Maha
    Garcia-Zapirain, Begonya
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (02): : 293 - 303
  • [13] Deep convolutional neural networks for COVID-19 automatic diagnosis
    Emara, Heba M.
    Shoaib, Mohamed R.
    Elwekeil, Mohamed
    El-Shafai, Walid
    Taha, Taha E.
    El-Fishawy, Adel S.
    El-Rabaie, El-Sayed M.
    Alshebeili, Saleh A.
    Dessouky, Moawad, I
    Abd El-Samie, Fathi E.
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (11) : 2504 - 2516
  • [14] A Novel Convolutional Neural Network Architecture to Diagnose COVID-19
    Aara, Thabasum S.
    Pandian, Arunaggiri K.
    Kumar, Sai T. S.
    Prabalakshmi, A.
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 595 - 599
  • [15] Optimized Convolutional Neural Network for Automatic Detection of COVID-19
    Muthumayir, K.
    Buvana, M.
    Sekar, K. R.
    El Amraoui, Adnen
    Nouaouri, Issam
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 1159 - 1175
  • [16] Deep Convolutional Neural Network Approach for COVID-19 Detection
    Xue, Yu
    Onzo, Bernard-Marie
    Mansour, Romany F.
    Su, Shoubao
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 42 (01): : 201 - 211
  • [17] Optimal Diagnosis of COVID-19 Based on Convolutional Neural Network and Red Fox Optimization Algorithm
    Khorami, Ehsan
    Babaei, Fatemeh Mahdi
    Azadeh, Aidin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [18] Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network
    Liang, Xiaoling
    Zhang, Yuexin
    Wang, Jiahong
    Ye, Qing
    Liu, Yanhong
    Tong, Jinwu
    FRONTIERS IN MEDICINE, 2021, 7
  • [19] Augmented Multicenter Graph Convolutional Network for COVID-19 Diagnosis
    Song, Xuegang
    Li, Haimei
    Gao, Wenwen
    Chen, Yue
    Wang, Tianfu
    Ma, Guolin
    Lei, Baiying
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6499 - 6509
  • [20] RETRACTED: PSCNN: PatchShuffle Convolutional Neural Network for COVID-19 Explainable Diagnosis (Retracted Article)
    Wang, Shui-Hua
    Zhu, Ziquan
    Zhang, Yu-Dong
    FRONTIERS IN PUBLIC HEALTH, 2021, 9