MP2[V] - A Simple Approximation to Second-Order Moller-Plesset Perturbation Theory

被引:7
|
作者
Deng, Jia [1 ]
Gilbert, Andrew T. B. [1 ]
Gill, Peter M. W. [1 ]
机构
[1] Australian Natl Univ, Res Sch Chem, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
QUANTUM-CHEMISTRY CALCULATIONS; MP2; ENERGY; MOLECULES; SPIN;
D O I
10.1021/acs.jctc.5b00147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a simplified variant of the dual-basis MP2[K] scheme [ J. Chem. Phys. 2011, 134, 081103] that bootstraps a small-basis MP2 result to a large-basis one. This simplified method, which we call MP2[V], assumes the occupied orbitals are adequately described by the smaller basis, and, therefore, only the relaxation of the virtual orbitals is considered when shifting to the larger basis. Numerical tests on several organic reactions and noncovalent interactions show that MP2[V] yields absolute and relative energies that are in excellent agreement with the conventional large-basis MP2 calculations but in a small fraction of the time.
引用
收藏
页码:1639 / 1644
页数:6
相关论文
共 50 条
  • [41] Staggered Mesh Method for Correlation Energy Calculations of Solids: Second-Order Moller-Plesset Perturbation Theory
    Xing, Xin
    Li, Xiaoxu
    Lin, Lin
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) : 4733 - 4745
  • [42] The relative energies of polypeptide conformers predicted by linear scaling second-order Moller-Plesset perturbation theory
    Guo Yang
    Li Wei
    Yuan DanDan
    Li ShuHua
    [J]. SCIENCE CHINA-CHEMISTRY, 2014, 57 (10) : 1393 - 1398
  • [43] An effective energy gradient expression for divide-and-conquer second-order Moller-Plesset perturbation theory
    Kobayashi, Masato
    Nakai, Hiromi
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04):
  • [44] Second-order Moller-Plesset perturbation theory for the transcorrelated Hamiltonian applied to solid-state calculations
    Ochi, Masayuki
    Tsuneyuki, Shinji
    [J]. CHEMICAL PHYSICS LETTERS, 2015, 621 : 177 - 183
  • [45] Cholesky-decomposed densities in Laplace-based second-order Moller-Plesset perturbation theory
    Zienau, Jan
    Clin, Lucien
    Doser, Bernd
    Ochsenfeld, Christian
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (20):
  • [46] New implementation of second-order Moller-Plesset perturbation theory with an analytic Slater-type geminal
    Ten-no, Seiichiro
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01):
  • [47] Dispersion-corrected Moller-Plesset second-order perturbation theory (vol 131, 094106, 2009)
    Tkatchenko, Alexandre
    DiStasio, Robert A., Jr.
    Head-Gordon, Martin
    Scheffler, Matthias
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (12):
  • [48] Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order Moller-Plesset Perturbation Theory
    Rezac, Jan
    Greenwell, Chandler
    Beran, Gregory J. O.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (09) : 4711 - 4721
  • [49] A scaled explicitly correlated F12 correction to second-order MOller-Plesset perturbation theory
    Urban, L.
    Thompson, T. H.
    Ochsenfeld, C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04):
  • [50] Communications: Explicitly correlated second-order Moller-Plesset perturbation method for extended systems
    Shiozaki, Toru
    Hirata, So
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15):