Radial Gradients in Dust-to-gas Ratio Lead to Preferred Region for Giant Planet Formation

被引:19
|
作者
Chachan, Yayaati [1 ]
Lee, Eve J. [2 ,3 ,4 ]
Knutson, Heather A. [1 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] McGill Univ, Dept Phys, 3550 Rue Univ, Montreal, PQ H3A 2T8, Canada
[3] McGill Univ, McGill Space Inst, 3550 Rue Univ, Montreal, PQ H3A 2T8, Canada
[4] Inst Res Exoplanets, Montreal, PQ, Canada
来源
ASTROPHYSICAL JOURNAL | 2021年 / 919卷 / 01期
关键词
PROTOPLANETARY DISCS; SOLAR-SYSTEM; OPTICAL-PROPERTIES; SIZE DISTRIBUTION; ACCRETION DISKS; YOUNG OBJECTS; SUPER-EARTHS; SNOW-LINE; EVOLUTION; II;
D O I
10.3847/1538-4357/ac0bb6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Rosseland mean opacity of dust in protoplanetary disks is often calculated assuming the interstellar medium (ISM) size distribution and a constant dust-to-gas ratio. However, the dust size distribution and dust-to-gas ratio in protoplanetary disks are distinct from those of the ISM. Here we use simple dust evolution models that incorporate grain growth and transport to calculate the time evolution of the mean opacity of dust grains as a function of distance from the star. Dust dynamics and size distribution are sensitive to the assumed value of the turbulence strength alpha (t) and the velocity at which grains fragment v (frag). For moderate-to-low turbulence strengths of alpha (t) less than or similar to 10(-3) and substantial differences in v (frag) for icy and ice-free grains, we find a spatially nonuniform dust-to-gas ratio and grain size distribution that deviate significantly from the ISM values, in agreement with previous studies. The effect of a nonuniform dust-to-gas ratio on the Rosseland mean opacity dominates over that of the size distribution. This spatially varying-that is, non-monotonic-dust-to-gas ratio creates a region in the protoplanetary disk that is optimal for producing hydrogen-rich planets, potentially explaining the apparent peak in the gas-giant planet occurrence rate at intermediate distances. The enhanced dust-to-gas ratio within the ice line also suppresses gas accretion rates onto sub-Neptune cores, thus stifling their tendency to undergo runaway gas accretion within disk lifetimes. Finally, our work corroborates the idea that low-mass cores with large primordial gaseous envelopes ("super-puffs") originate beyond the ice line.
引用
收藏
页数:18
相关论文
共 50 条
  • [42] Molecular gas, stars, and dust in sub-L* star-forming galaxies at z ∼ 2: Evidence for universal star formation and non-universal dust-to-gas ratio
    Dessauges-Zavadsky, Miroslava
    Zamojski, Michel
    Schaerer, Daniel
    Combes, Francoise
    Egami, Eiichi
    Sklias, Panos
    Swinbank, Mark A.
    Richard, Johan
    Rawle, Tim
    FROM INTERSTELLAR CLOUDS TO STAR-FORMING GALAXIES: UNIVERSAL PROCESSES?, 2015, (315): : 254 - 257
  • [43] GIANT PLANET FORMATION - A COMPARATIVE VIEW OF GAS-ACCRETION
    WUCHTERL, G
    EARTH MOON AND PLANETS, 1995, 67 (1-3): : 51 - 65
  • [44] THE HCN-WATER RATIO IN THE PLANET FORMATION REGION OF DISKS
    Najita, Joan R.
    Carr, John S.
    Pontoppidan, Klaus M.
    Salyk, Colette
    van Dishoeck, Ewine F.
    Blake, Geoffrey A.
    ASTROPHYSICAL JOURNAL, 2013, 766 (02):
  • [45] Mass-loss rates and dust-to-gas ratios for obscured Asymptotic Giant Branch stars of different metallicities
    van Loon, JT
    ASTRONOMY & ASTROPHYSICS, 2000, 354 (01): : 125 - 134
  • [46] THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES
    Sandstrom, K. M.
    Leroy, A. K.
    Walter, F.
    Bolatto, A. D.
    Croxall, K. V.
    Draine, B. T.
    Wilson, C. D.
    Wolfire, M.
    Calzetti, D.
    Kennicutt, R. C.
    Aniano, G.
    Meyer, J. Donovan
    Usero, A.
    Bigiel, F.
    Brinks, E.
    de Blok, W. J. G.
    Crocker, A.
    Dale, D.
    Engelbracht, C. W.
    Galametz, M.
    Groves, B.
    Hunt, L. K.
    Koda, J.
    Kreckel, K.
    Linz, H.
    Meidt, S.
    Pellegrini, E.
    Rix, H. -W.
    Roussel, H.
    Schinnerer, E.
    Schruba, A.
    Schuster, K. -F.
    Skibba, R.
    van der Laan, T.
    Appleton, P.
    Armus, L.
    Brandl, B.
    Gordon, K.
    Hinz, J.
    Krause, O.
    Montiel, E.
    Sauvage, M.
    Schmiedeke, A.
    Smith, J. D. T.
    Vigroux, L.
    ASTROPHYSICAL JOURNAL, 2013, 777 (01):
  • [47] PLANET TRAPS AND FIRST PLANETS: THE CRITICAL METALLICITY FOR GAS GIANT FORMATION
    Hasegawa, Yasuhiro
    Hirashita, Hiroyuki
    ASTROPHYSICAL JOURNAL, 2014, 788 (01):
  • [48] The dust-to-gas ratio in the damped Ly alpha clouds toward the gravitationally lensed QSO 0957+561
    Zuo, L
    Beaver, EA
    Burbidge, EM
    Cohen, RD
    Junkkarinen, VT
    Lyons, RW
    ASTROPHYSICAL JOURNAL, 1997, 477 (02): : 568 - 573
  • [49] GAS GIANT PLANET FORMATION IN THE PHOTOEVAPORATING DISK. I. GAP FORMATION
    Xiao, Lin
    Jin, Liping
    Liu, Chengzhi
    Fan, Cunbo
    ASTROPHYSICAL JOURNAL, 2016, 826 (02):
  • [50] Chemical footprints of giant planet formation: Role of planet accretion in shaping the C/O ratio of protoplanetary disks
    Jiang, Haochang
    Wang, Yu
    Orme, Chris W.
    Krijt, Sebastiaan
    Dong, Ruobing
    ASTRONOMY & ASTROPHYSICS, 2023, 678