Weak linear bilevel programming problems: existence of solutions via a penalty method

被引:28
|
作者
Aboussoror, A
Mansouri, A
机构
[1] Univ Cadi Ayyad, SAFI, Ctr Etud Univ, Safi, Morocco
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
关键词
bilevel programming; linear programming; duality; penalty methods;
D O I
10.1016/j.jmaa.2004.09.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a class of weak linear bilevel programs with nonunique lower level solutions. For such problems, we give via an exact penalty method an existence theorem of solutions. Then. we propose an algorithm. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 50 条
  • [21] Strong-Weak Nonlinear Bilevel Problems: Existence of Solutions in a Sequential Setting
    Aboussoror, Abdelmalek
    Adly, Samir
    Saissi, Fatima Ezzahra
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2017, 25 (01) : 113 - 132
  • [22] Strong-Weak Nonlinear Bilevel Problems: Existence of Solutions in a Sequential Setting
    Abdelmalek Aboussoror
    Samir Adly
    Fatima Ezzahra Saissi
    [J]. Set-Valued and Variational Analysis, 2017, 25 : 113 - 132
  • [23] A NEW METHOD FOR STRONG-WEAK LINEAR BILEVEL PROGRAMMING PROBLEM
    Zheng, Yue
    Wan, Zhongping
    Jia, Shihui
    Wang, Guangmin
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (02) : 529 - 547
  • [24] EXISTENCE OF WEAK SOLUTIONS FOR SOME NON-LINEAR PROBLEMS BY THE SCHAUDER METHOD
    BOCCARDO, L
    DOLCETTA, IC
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 : 1 - 20
  • [25] A Branch and Bound-Based Algorithm for the Weak Linear Bilevel Programming Problems
    LIU June
    HONG Yunfei
    ZHENG Yue
    [J]. Wuhan University Journal of Natural Sciences, 2018, 23 (06) : 480 - 486
  • [26] USING BISECTION METHOD FOR SOLVING LINEAR BILEVEL PROGRAMMING PROBLEMS
    Jahanshahloo, A.
    Zohrehbandian, M.
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2016, 15 (07): : 195 - 204
  • [27] Solving linear bilevel multiobjective programming problem via exact penalty function approach
    Yibing Lv
    Zhongping Wan
    [J]. Journal of Inequalities and Applications, 2015
  • [28] Possibilistic Stackelberg solutions to bilevel linear programming problems with fuzzy parameters
    Katagiri, Hideki
    Kato, Kosuke
    Uno, Takeshi
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (06) : 4485 - 4501
  • [29] Possibilistic Stackelberg Solutions to Bilevel Linear Programming Problems with Fuzzy Parameters
    Katagiri, Hideki
    Kato, Kosuke
    Uno, Takeshi
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 134 - 139
  • [30] Solving linear bilevel multiobjective programming problem via exact penalty function approach
    Lv, Yibing
    Wan, Zhongping
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,