Twisted Dirac operators and the noncommutative residue for manifolds with boundary

被引:8
|
作者
Wang, Jian [1 ]
Wang, Yong [2 ]
机构
[1] Tianjin Univ Technol & Educ, Sch Sci, Tianjin 300222, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Twisted Dirac operators; Twisted signature operators; Noncommutative residue; Non-unitary connection; GRAVITY; THEOREM;
D O I
10.1007/s11868-015-0139-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give two Lichnerowicz type formulas for Dirac operators and signature operators twisted by a vector bundle with a non-unitary connection. We also prove two Kastler-Kalau-Walze type theorems for twisted Dirac operators and twisted signature operators on four-dimensional manifolds with (resp. without) boundary.
引用
收藏
页码:181 / 211
页数:31
相关论文
共 50 条
  • [31] Harmonic spinors for twisted Dirac operators
    Bar, C
    MATHEMATISCHE ANNALEN, 1997, 309 (02) : 225 - 246
  • [32] Twisted Reality Condition for Dirac Operators
    Tomasz Brzeziński
    Nicola Ciccoli
    Ludwik Dąbrowski
    Andrzej Sitarz
    Mathematical Physics, Analysis and Geometry, 2016, 19
  • [33] Harmonic spinors for twisted Dirac operators
    Christian Bär
    Mathematische Annalen, 1997, 309 : 225 - 246
  • [34] Twisted Higher Spin Dirac Operators
    H. De Schepper
    D. Eelbode
    T. Raeymaekers
    Complex Analysis and Operator Theory, 2014, 8 : 429 - 447
  • [35] Twisted Dirac operators and generalized gradients
    Yasushi Homma
    Annals of Global Analysis and Geometry, 2016, 50 : 101 - 127
  • [36] Estimation on the Spinc twisted Dirac operators
    Eker, Serhan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (06): : 1621 - 1629
  • [37] Noncommutative residue invariants for CR and contact manifolds
    Ponge, Raphail
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 614 : 117 - 151
  • [38] Twisted Higher Spin Dirac Operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (02) : 429 - 447
  • [39] An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary
    Melrose, RB
    Piazza, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 46 (02) : 287 - 334
  • [40] Dirac–Witten Operators and the Kastler–Kalau–Walze Type Theorem for Manifolds with Boundary
    Tong Wu
    Jian Wang
    Yong Wang
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 1 - 40