The maximum of a branching random walk with semiexponential increments

被引:23
|
作者
Gantert, N [1 ]
机构
[1] Tech Univ Berlin, Dept Math, D-10623 Berlin, Germany
来源
ANNALS OF PROBABILITY | 2000年 / 28卷 / 03期
关键词
branching random walk; tree-indexed random walk; Galton-Watson tree; semiexponential distributions; sums of i.i.d. random variables;
D O I
10.1214/aop/1019160332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider an infinite Galton-Watson tree Gamma and label the vertices nu with a collection of i.i.d. random variables (Y-nu)(nu is an element of Gamma). In the case where the upper tail of the distribution of Y-nu is semiexponential, we then determine the speed of the corresponding tree-indexed random walk. In contrast to the classical case where the random variables Y-nu have finite exponential moments, the normalization in the definition of the speed depends on the distribution of Y-nu. Interpreting the random variables Y-nu as displacements of the offspring from the parent, (Y-nu)(nu is an element of Gamma) describes a branching random walk. The result on the speed gives a limit theorem for the maximum of the branching random walk, that is, for the position of the rightmost particle. In our case, this maximum grows faster than linear in time.
引用
收藏
页码:1219 / 1229
页数:11
相关论文
共 50 条
  • [31] On the support of the simple branching random walk
    Johnson, Torrey
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 91 : 107 - 109
  • [32] Branching random walk with a single source
    Albeverio, S
    Bogachev, LV
    Yarovaya, EB
    [J]. COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 9 - 19
  • [33] ON THE DERIVATIVE MARTINGALE IN A BRANCHING RANDOM WALK
    Buraczewski, Dariusz
    Iksanov, Alexander
    Mallein, Bastien
    [J]. ANNALS OF PROBABILITY, 2021, 49 (03): : 1164 - 1204
  • [34] A prediction problem of the branching random walk
    Révész, P
    [J]. JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 25 - 31
  • [35] The spread of a catalytic branching random walk
    Carmona, Philippe
    Hu, Yueyun
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 327 - 351
  • [36] MINIMAL POSITIONS IN A BRANCHING RANDOM WALK
    McDiarmid, Colin
    [J]. ANNALS OF APPLIED PROBABILITY, 1995, 5 (01): : 128 - 139
  • [37] On the maximum of a simple random walk
    Vatutin, VA
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (02) : 398 - 402
  • [38] Simulating the maximum of a random walk
    Ensor, KB
    Glynn, PW
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 85 (1-2) : 127 - 135
  • [39] Subsequential tightness for branching random walk in random environment
    Kriechbaum, Xaver
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [40] On the maximum of a perturbed random walk
    Iksanov, Alexander
    Pilipenko, Andrey
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 92 : 168 - 172