On the Exponents of Exponential Dichotomies

被引:0
|
作者
Battelli, Flaviano [1 ]
Feckan, Michal [2 ,3 ]
机构
[1] Marche Polytecn Univ, Dept Ind Engn & Math, Ancona 60121, Italy
[2] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
exponential dichotomy; roughness; asymptotically constant matrices; LINEAR-SYSTEMS; SEPARATION;
D O I
10.3390/math8040651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponential dichotomy is studied for linear differential equations. A constructive method is presented to derive a roughness result for perturbations giving exponents of the dichotomy as well as an estimate of the norm of the difference between the corresponding two dichotomy projections. This roughness result is crucial in developing a Melnikov bifurcation method for either discontinuous or implicit perturbed nonlinear differential equations.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [22] SMOOTH ROUGHNESS OF EXPONENTIAL DICHOTOMIES, REVISITED
    Poetzsche, Christian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 853 - 859
  • [23] Lyapunov functions for strong exponential dichotomies
    Barreira, Luis
    Dragicevic, Davor
    Valls, Claudia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 116 - 132
  • [24] Exponential dichotomies in average for flows and admissibility
    Barreira, Luis
    Dragicevic, Davor
    Valls, Claudia
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2016, 89 (04): : 415 - 439
  • [25] Nonuniform exponential dichotomies and Lyapunov regularity
    Barreira, Luis
    Valls, Claudia
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (01) : 215 - 241
  • [26] Nonuniform Exponential Dichotomies and Lyapunov Regularity
    Luis Barreira
    Claudia Valls
    Journal of Dynamics and Differential Equations, 2007, 19 : 215 - 241
  • [27] Generalized exponential dichotomies for evolution operators
    Lupa, Nicolae
    Megan, Mihail
    Popa, Ioan-Lucian
    2015 IEEE 10TH JUBILEE INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2015, : 55 - 58
  • [28] Fredholm operators and nonuniform exponential dichotomies
    Barreira, Luis
    Dragicevic, Davor
    Valls, Claudia
    CHAOS SOLITONS & FRACTALS, 2016, 85 : 120 - 127
  • [29] EXPONENTIAL DICHOTOMIES AND TRANSVERSAL HOMOCLINIC POINTS
    PALMER, KJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 55 (02) : 225 - 256
  • [30] Exponential dichotomies and a nonlinear H∞ control problem
    Fabbri, R
    Johnson, R
    Applied and Industrial Mathematics in Italy, 2005, 69 : 315 - 323