Invariants and chaotic maps

被引:0
|
作者
Steeb, WH [1 ]
vanWyk, MA [1 ]
机构
[1] NATL UNIV SINGAPORE, COMPUTAT SCI PROGRAMME, SINGAPORE, SINGAPORE
关键词
D O I
10.1007/BF02302415
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-dimensional map f(x) is called an invariant of a two-dimensional map g(x, y) if g(x, f(x)) = f(f(x)) The logistic map is an invariant of a class of two-dimensional maps. We construct a class of two-dimensional maps which admit the logistic maps as their invariant. Moreover, we calculate their Lyapunov exponents. We show that the two-dimensional map can show hyperchaotic behavior.
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 50 条
  • [21] Improving Chaotic Features of Fractional Chaotic Maps
    Yang, Chunxiao
    Taralova, Ina
    Loiseau, Jean Jacques
    [J]. IFAC PAPERSONLINE, 2021, 54 (17): : 154 - 159
  • [22] MULTIPLE POINT INVARIANTS OF LINK MAPS
    KOSCHORKE, U
    [J]. LECTURE NOTES IN MATHEMATICS, 1988, 1350 : 44 - 86
  • [23] REDUCED INVARIANTS FROM CUSPIDAL MAPS
    Battistella, Luca
    Carocci, Francesca
    Manolache, Cristina
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (09) : 6713 - 6756
  • [24] WITT INVARIANTS FOR SMOOTH PERIODIC MAPS
    ALEXANDE.JP
    HAMRICK, GC
    VICK, JW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A229 - A229
  • [25] Invariants of gauss maps of theta divisors
    Adams, Malcolm
    McCrory, Clint
    Shifrin, Ted
    Varley, Robert
    [J]. Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [26] TRACE MAPS, INVARIANTS, AND SOME OF THEIR APPLICATIONS
    BAAKE, M
    GRIMM, U
    JOSEPH, D
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (6-7): : 1527 - 1550
  • [27] Reidemeister coincidence invariants of fiberwise maps
    Koschorke, Ulrich
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) : 1849 - 1858
  • [28] Initial monomial invariants of holomorphic maps
    Dusty Grundmeier
    Jiří Lebl
    [J]. Mathematische Zeitschrift, 2016, 282 : 371 - 387
  • [29] CECH HOMOLOGY INVARIANTS OF CONTINUOUS MAPS
    PITCHER, E
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (03) : 286 - 287
  • [30] Cycle Class Maps and Birational Invariants
    Hassett, Brendan
    Tschinkel, Yuri
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (12) : 2675 - 2698