Invariants and chaotic maps

被引:0
|
作者
Steeb, WH [1 ]
vanWyk, MA [1 ]
机构
[1] NATL UNIV SINGAPORE, COMPUTAT SCI PROGRAMME, SINGAPORE, SINGAPORE
关键词
D O I
10.1007/BF02302415
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-dimensional map f(x) is called an invariant of a two-dimensional map g(x, y) if g(x, f(x)) = f(f(x)) The logistic map is an invariant of a class of two-dimensional maps. We construct a class of two-dimensional maps which admit the logistic maps as their invariant. Moreover, we calculate their Lyapunov exponents. We show that the two-dimensional map can show hyperchaotic behavior.
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 50 条
  • [1] Chaotic maps, invariants, Bose operators, and coherent states
    Steeb, WH
    Hardy, Y
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (01) : 85 - 88
  • [2] Chaotic Maps, Invariants, Bose Operators, and Coherent States
    W.-H. Steeb
    Y. Hardy
    [J]. International Journal of Theoretical Physics, 2003, 42 : 85 - 88
  • [3] AN EFFICIENT AND ACCURATE METHOD FOR THE ESTIMATION OF ENTROPY AND OTHER DYNAMICAL INVARIANTS FOR PIECEWISE AFFINE CHAOTIC MAPS
    Addabbo, Tommaso
    Fort, Ada
    Papini, Duccio
    Rocchi, Santina
    Vignoli, Valerio
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12): : 4175 - 4195
  • [4] LINK MAPS AND THE GEOMETRY OF THEIR INVARIANTS
    KOSCHORKE, U
    [J]. MANUSCRIPTA MATHEMATICA, 1988, 61 (04) : 383 - 415
  • [5] Gromov invariants and symplectic maps
    Eleny-Nicoleta Ionel
    Thomas H. Parker
    [J]. Mathematische Annalen, 1999, 314 : 127 - 158
  • [6] PULLBACK INVARIANTS OF THURSTON MAPS
    Koch, Sarah
    Pilgrim, Kevin M.
    Selinger, Nikita
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) : 4621 - 4655
  • [7] Cobordism invariants of fold maps
    Kalmar, Boldizsar
    [J]. REAL AND COMPLEX SINGULARITIES, 2008, 459 : 103 - 115
  • [8] Topological invariants of polynomial maps
    Bartolo, EA
    Cassou-Noguès, P
    Maugendre, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 751 - 754
  • [9] Numerical invariants of phantom maps
    McGibbon, CA
    Strom, J
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (04) : 679 - 697
  • [10] Motivic invariants of birational maps
    Lin, Hsueh-Yung
    Shinder, Evgeny
    [J]. ANNALS OF MATHEMATICS, 2024, 199 (01) : 445 - 478