Multiclass Classification of Driver Perceived Workload Using Long Short-Term Memory based Recurrent Neural Network

被引:0
|
作者
Manawadu, Udara E. [1 ]
Kawano, Takahiro [1 ]
Murata, Shingo [4 ]
Kamezaki, Mitsuhiro [1 ,2 ]
Muramatsu, Junya [3 ]
Sugano, Shigeki [4 ]
机构
[1] Waseda Univ, Grad Sch Creat Sci & Engn, Dept Modern Mech Engn, Shinjuku Ku, 17 Kikui Cho, Tokyo 1620044, Japan
[2] Waseda Univ, Res Inst Sci & Engn RISE, Shinjuku Ku, 17 Kikui Cho, Tokyo 1620044, Japan
[3] Toyota Motor Co Ltd, AI Syst Adv Dev Div, Higashifuji Tech Ctr, 1200 Mishuku, Susono, Shizuoka 4101193, Japan
[4] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human sensing enables intelligent vehicles to provide driver-adaptive support by classifying perceived workload into multiple levels. Objective of this study is to classify driver workload associated with traffic complexity into five levels. We conducted driving experiments in systematically varied traffic complexity levels in a simulator. We recorded driver physiological signals including electrocardiography, electrodermal activity, and electroencephalography. In addition, we integrated driver performance and subjective workload measures. Deep learning based models outperform statistical machine learning methods when dealing with dynamic time-series data with variable sequence lengths. We show that our long short-term memory based recurrent neural network model can classify driver perceived-workload into five classes with an accuracy of 74.5%. Since perceived workload differ between individual drivers for the same traffic situation, our results further highlight the significance of including driver characteristics such as driving style and workload sensitivity to achieve higher classification accuracy.
引用
收藏
页码:2009 / 2014
页数:6
相关论文
共 50 条
  • [21] Performance prediction of fuel cells using long short-term memory recurrent neural network
    Zheng, Lu
    Hou, Yongping
    Zhang, Tao
    Pan, Xiangmin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 9141 - 9161
  • [22] Forecasting of FOREX Price Trend Using Recurrent Neural Network - Long Short-term Memory
    Dobrovolny, Michal
    Soukal, Ivan
    Lim, Kok Cheng
    Selamat, Ali
    Krejcar, Ondrej
    HRADEC ECONOMIC DAYS 2020, VOL 10, PT 1, 2020, 10 : 95 - 103
  • [23] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [24] Terahertz Spectral Recognition Based on Bidirectional Long Short-Term Memory Recurrent Neural Network
    Yu Hao-yue
    Shen Tao
    Zhu Yan
    Liu Ying-li
    Yu Zheng-tao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (12) : 3737 - 3742
  • [25] On extended long short-term memory and dependent bidirectional recurrent neural network
    Su, Yuanhang
    Kuo, C-C Jay
    NEUROCOMPUTING, 2019, 356 : 151 - 161
  • [26] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [27] Applying Long Short-Term Memory Recurrent Neural Network for Intrusion Detection
    Althubiti, Sara
    Nick, William
    Mason, Janelle
    Yuan, Xiaohong
    Esterline, Albert
    IEEE SOUTHEASTCON 2018, 2018,
  • [28] Long Short-Term Memory Recurrent Neural Network Architectures for Melody Generation
    Mishra, Abhinav
    Tripathi, Kshitij
    Gupta, Lakshay
    Singh, Krishna Pratap
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 41 - 55
  • [29] Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting
    Yang, Cheng-Hong
    Wu, Chih-Hsien
    Hsieh, Chih-Min
    IEEE ACCESS, 2020, 8 (08) : 159389 - 159401
  • [30] Long Short-Term Memory Recurrent Neural Network for Automatic Speech Recognition
    Oruh, Jane
    Viriri, Serestina
    Adegun, Adekanmi
    IEEE ACCESS, 2022, 10 : 30069 - 30079