Evolutionary structural optimisation (ESO) using a bidirectional algorithm

被引:479
|
作者
Querin, OM [1 ]
Steven, GP
Xie, YM
机构
[1] Univ Sydney, Dept Aeronaut Engn, Sydney, NSW 2006, Australia
[2] Victoria Univ Technol, Melbourne, Vic 3000, Australia
关键词
algorithms; structural optimisation;
D O I
10.1108/02644409810244129
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Describes development work to combine the basic ESO with the additive evolutionary structural optimisation (AESO) to produce bidirectional ESO whereby material can be added and can be removed. It will be shown that this provides the same results as the traditional ESO. This has two benefits, it validates the whole ESO concept and there is a significant time saving since the structure grows from a small initial one rather than contracting from a sometimes huge initial one where 90 per cent of the material gets removed over many hundreds of finite element analysis (FEA) evolutionary cycles. Presents a brief background to the current state of Structural Optimisation research. This is followed by a discussion of the strategies for the bidirectional ESO (BESO) algorithm and two examples are presented.
引用
收藏
页码:1031 / +
页数:19
相关论文
共 50 条
  • [21] Quadratic programming solver for structural optimisation using SQP algorithm
    Horowitz, B
    Afonso, SMB
    ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (7-10) : 669 - 674
  • [22] Application of Evolutionary Algorithm on Aerodynamic Wing Optimisation
    Cervenka, Miroslav
    Zelinka, Ivan
    PROCEEDINGS OF THE 2ND EUROPEAN COMPUTING CONFERENCE: NEW ASPECTS ON COMPUTERS RESEACH, 2008, : 344 - +
  • [23] Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation
    Lu, Xiaofen
    Tang, Ke
    Yao, Xin
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 203 - 213
  • [24] Optimization of the Fundamental Frequency of Mechanical Structures by Using the Bidirectional Evolutionary Structural Method
    Lisboa, Ederval de Souza
    Dias Moreira, Joao Baptista
    Cesconeto, Emanuel Moutinho
    Paucar Casas, Walter Jesus
    PROCEEDINGS OF DINAME 2017, 2019, : 141 - 153
  • [25] An automated programme for the optimisation of HPGe detector parameters using an evolutionary algorithm with GESPECOR
    Murphy, N. M.
    Vintro, L. Leon
    Burbidge, C., I
    Currivan, L.
    APPLIED RADIATION AND ISOTOPES, 2020, 156
  • [26] Modelling and exergoeconomic optimisation of a gas turbine with absorption chiller using evolutionary algorithm
    Ahmadi, P.
    Enadi, N.
    Avval, H. Barzegar
    Dincer, I.
    INTERNATIONAL JOURNAL OF EXERGY, 2012, 11 (01) : 1 - 18
  • [27] Optimisation of an Energy System in Finland using NSGA-II Evolutionary Algorithm
    Wahlroos, Mikko
    Jaaskelainen, Jaakko
    Hirvonen, Janne
    2018 15TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2018,
  • [28] Optimisation of work roll grinding using Response Surface Methodology and evolutionary algorithm
    Mohanasundararaju, N.
    Sivasubramanian, R.
    Alagumurthi, N.
    International Journal of Manufacturing Research, 2008, 3 (02) : 236 - 251
  • [29] Multi-Modal Optimisation using a Localised Surrogates Assisted Evolutionary Algorithm
    Fieldsend, Jonathan E.
    2013 13TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2013, : 88 - 95
  • [30] Stiffness and inertia multicriteria evolutionary structural optimisation
    Proos, KA
    Steven, GP
    Querin, OM
    Xie, YM
    ENGINEERING COMPUTATIONS, 2001, 18 (7-8) : 1031 - 1054