FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV RANDOM FIELDS

被引:10
|
作者
Do, Huan N. [1 ]
Jadaliha, Mahdi [1 ]
Temel, Mehmet [1 ]
Choi, Jongeun [1 ,2 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Vision-based localization; spatial modeling; simultaneous localization and mapping (SLAM); Gaussian process regression; Gaussian Markov random field; SENSOR NETWORKS; SPATIAL PREDICTION; ALGORITHMS; NAVIGATION;
D O I
10.1002/asjc.1237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a fully Bayesian way to solve the simultaneous localization and spatial prediction problem using a Gaussian Markov random field (GMRF) model. The objective is to simultaneously localize robotic sensors and predict a spatial field of interest using sequentially collected noisy observations by robotic sensors. The set of observations consists of the observed noisy positions of robotic sensing vehicles and noisy measurements of a spatial field. To be flexible, the spatial field of interest is modeled by a GMRF with uncertain hyperparameters. We derive an approximate Bayesian solution to the problem of computing the predictive inferences of the GMRF and the localization, taking into account observations, uncertain hyperparameters, measurement noise, kinematics of robotic sensors, and uncertain localization. The effectiveness of the proposed algorithm is illustrated by simulation results as well as by experiment results. The experiment results successfully show the flexibility and adaptability of our fully Bayesian approach in a data-driven fashion.
引用
收藏
页码:1175 / 1188
页数:14
相关论文
共 50 条
  • [31] Approximating hidden Gaussian Markov random fields
    Rue, H
    Steinsland, I
    Erland, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 877 - 892
  • [32] MARKOV PROPERTY FOR GENERALIZED GAUSSIAN RANDOM FIELDS
    KALLIANPUR, G
    MANDREKA.V
    [J]. ANNALES DE L INSTITUT FOURIER, 1974, 24 (02) : 143 - 167
  • [33] INNOVATION PROBLEM FOR GAUSSIAN MARKOV RANDOM FIELDS
    DOBRUSHIN, RL
    SURGAILIS, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03): : 275 - 291
  • [34] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [35] Gaussian Markov random fields: Theory and applications
    Congdon, Peter
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 858 - 858
  • [36] Fast sampling of Gaussian Markov random fields
    Rue, H
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 325 - 338
  • [37] Infrared Texture Simulation Using Gaussian-Markov Random Fields
    Xiao-peng Shao
    Xiao-ming Zhao
    Jun Xu
    Jian-qi Zhang
    [J]. International Journal of Infrared and Millimeter Waves, 2004, 25 : 1699 - 1710
  • [38] Infrared texture simulation using Gaussian-Markov random fields
    Shao, XP
    Zhao, XM
    Xu, J
    Zhang, JQ
    [J]. INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 25 (11): : 1699 - 1710
  • [39] Modeling material stress using integrated Gaussian Markov random fields
    Marcy, Peter W.
    Vander Wiel, Scott A.
    Storlie, Curtis B.
    Livescu, Veronica
    Bronkhorst, Curt A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (09) : 1616 - 1636
  • [40] DISCRETE OPTIMIZATION VIA SIMULATION USING GAUSSIAN MARKOV RANDOM FIELDS
    Salemi, Peter
    Nelson, Barry L.
    Staum, Jeremy
    [J]. PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 3809 - 3820