A Note on Spanning Eulerian Graphs

被引:0
|
作者
Li, Liangchen [1 ]
Li, Xiangwen [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called biclaw-free if it has no biclaw as an introduced subgraph. Lai and Yao [Discrete Math., 307 (2007) 1217] conjectured that every 2-connected biclaw-free graph G with delta(G) >= 4 has a spanning eulerian subgraph H with maximum degree Delta(H) <= 4. In this note, the conjecture is answered to the negative.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [31] A DEGREE CONDITION FOR SPANNING EULERIAN SUBGRAPHS
    CHEN, ZH
    JOURNAL OF GRAPH THEORY, 1993, 17 (01) : 5 - 21
  • [32] THE NP-COMPLETENESS OF FINDING A-TRAILS IN EULERIAN GRAPHS AND OF FINDING SPANNING-TREES IN HYPERGRAPHS
    ANDERSEN, LD
    FLEISCHNER, H
    DISCRETE APPLIED MATHEMATICS, 1995, 59 (03) : 203 - 214
  • [33] Spanning Eulerian Subdigraphs in Jump Digraphs
    Juan LIU
    Hong YANG
    Hongjian LAI
    Xindong ZHANG
    JournalofMathematicalResearchwithApplications, 2022, 42 (05) : 441 - 454
  • [34] NEARLY-EULERIAN SPANNING SUBGRAPHS
    CATLIN, PA
    ARS COMBINATORIA, 1988, 25 : 115 - 124
  • [35] EULERIAN GRAPHS AND PAIRS OF HAMILTON GRAPHS
    DORNINGE.D
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1972, 22 (04) : 600 - 611
  • [36] GRAPHS WITH EULERIAN CHAINS
    EGGLETON, RB
    SKILTON, DK
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 29 (03) : 389 - 399
  • [37] ON EULERIAN IRREGULARITY IN GRAPHS
    Andrews, Eric
    Lumduanhom, Chira
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) : 391 - 408
  • [38] EULERIAN POLAR GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1976, 26 (03) : 361 - 364
  • [39] ON MINIMAL EULERIAN GRAPHS
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    INFORMATION PROCESSING LETTERS, 1981, 12 (04) : 203 - 205
  • [40] Eulerian Glued Graphs
    Boonthong, V.
    Putthapiban, P.
    Chaisuriya, P.
    Pacheenburawana, P.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (01): : 103 - 109