A Note on Spanning Eulerian Graphs

被引:0
|
作者
Li, Liangchen [1 ]
Li, Xiangwen [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called biclaw-free if it has no biclaw as an introduced subgraph. Lai and Yao [Discrete Math., 307 (2007) 1217] conjectured that every 2-connected biclaw-free graph G with delta(G) >= 4 has a spanning eulerian subgraph H with maximum degree Delta(H) <= 4. In this note, the conjecture is answered to the negative.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [1] SPANNING SUBGRAPHS OF EULERIAN GRAPHS
    BOESCH, FT
    SUFFEL, C
    TINDELL, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A302 - A302
  • [2] ON GRAPHS ADMITTING SPANNING EULERIAN SUBGRAPHS
    PAULRAJA, P
    ARS COMBINATORIA, 1987, 24 : 57 - 65
  • [3] CONTRACTIONS OF GRAPHS WITH NO SPANNING EULERIAN SUBGRAPHS
    CATLIN, PA
    COMBINATORICA, 1988, 8 (04) : 313 - 321
  • [4] NOTE ON GRAPHS SPANNED BY EULERIAN GRAPHS
    PULLEYBLANK, WR
    JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 309 - 310
  • [5] NOTE ON SUB-EULERIAN GRAPHS
    JAEGER, F
    JOURNAL OF GRAPH THEORY, 1979, 3 (01) : 91 - 93
  • [6] A note on collapsible graphs and super-Eulerian graphs
    Li, Hao
    Yang, Weihua
    DISCRETE MATHEMATICS, 2012, 312 (15) : 2223 - 2227
  • [7] A Note on the Maximum Number of Edges of a Spanning Eulerian Subgraph
    Li, Dengxin
    Li, Shengyu
    ARS COMBINATORIA, 2010, 97A : 279 - 286
  • [8] A note on universal graphs for spanning trees
    Gyori, Ervin
    Li, Binlong
    Salia, Nika
    Tompkins, Casey
    DISCRETE APPLIED MATHEMATICS, 2025, 362 : 146 - 147
  • [9] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Xiangwen Li
    Chunxiang Wang
    Qiong Fan
    Zhaohong Niu
    Liming Xiong
    Graphs and Combinatorics, 2013, 29 : 275 - 280
  • [10] Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
    Li, Xiangwen
    Wang, Chunxiang
    Fan, Qiong
    Niu, Zhaohong
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2013, 29 (02) : 275 - 280