Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays

被引:15
|
作者
Pan, Ying [1 ]
Tao, Ye [2 ]
Qin, Guangzhao [3 ]
Fedoryshyn, Yuriy [4 ]
Raja, Yamprasad N. [1 ]
Hu, Ming [3 ,5 ]
Degen, Christian L. [2 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, Sonneggstr 3, CH-8092 Zurich, Switzerland
[2] ETH, Dept Phys, Solid State Phys Lab, Otto Stern Weg 1, CH-8093 Zurich, Switzerland
[3] Rhein Westfal TH Aachen, Inst Mineral Engn, Div Mat Sci & Engn, Mauerstr 5, D-52064 Aachen, Germany
[4] ETH, Dept Informat Technol & Elect Engn, Inst Elect Fields, Gloriastr 35, CH-8092 Zurich, Switzerland
[5] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, Mauerstr 5, D-52062 Aachen, Germany
基金
欧洲研究理事会;
关键词
Silicon nanowires; surface transfer doping; electron and phonon transport; SOLAR THERMOELECTRIC GENERATORS; THERMAL-CONDUCTIVITY; ENERGY-DISSIPATION; CHARGE-TRANSPORT; PERFORMANCE; NANOSTRUCTURES; NANOMEMBRANES; RESONATORS; MONOLAYERS; STABILITY;
D O I
10.1021/acs.nanolett.6b02754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report-electronic and phononic transport measurements of mono crystalline batch-fabricated silicon rianowire (SiNW) arrays functionalized with different surface chemistries. We find that hydrogen-terminated SiNWs prepared by vapor HF etching of native-oxide-covered devices show increased, electrical conductivity but decreased thermal Conductivity. We used the kinetic Monte Carlo method to solve the Boltzmann transport equation and also numerically examine the effect of phonon boundary scattering. Surface transfer doping of the SiNWs by cobaltocene or decamethylcobaltocene drastically improves the electrical conductivity by 2 to 4 orders of magnitude without affecting the thermal conductivity. The results showcase surface chemical control of nanomaterials as a potent pathway that can complement device miniaturization efforts in the quest for more efficient thermoelectric materials and devices.
引用
收藏
页码:6364 / 6370
页数:7
相关论文
共 50 条
  • [41] DC conduction in free-standing porous silicon
    Dariani, R. S.
    Hosseini, Z. S.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (10): : 1526 - 1530
  • [42] Oxidation and Strain in Free-standing Silicon Nanocrystals
    Falcao, Bruno P.
    Leitao, Joaquim P.
    Soares, Maria R.
    Ricardo, Lidia
    Aguas, Hugo
    Martins, Rodrigo
    Pereira, Rui N.
    PHYSICAL REVIEW APPLIED, 2019, 11 (02)
  • [43] Free-standing luminescent layers of porous silicon
    D. N. Goryachev
    L. V. Belyakov
    O. M. Sreseli
    Semiconductors, 2010, 44 : 1588 - 1591
  • [44] On the statistical thermodynamics of a free-standing nanocrystal: Silicon
    M. N. Magomedov
    Crystallography Reports, 2017, 62 : 480 - 496
  • [45] Raman study of free-standing porous silicon
    Tanino, H
    Kuprin, A
    Deai, H
    Koshida, N
    PHYSICAL REVIEW B, 1996, 53 (04): : 1937 - 1947
  • [46] Analysis of modes in a free-standing nanowire cavity by FDTD simulation
    WANG Miao-qing-(1
    OptoelectronicsLetters, 2005, (02) : 16 - 19
  • [47] Highly flexible, nonflammable and free-standing SiC nanowire paper
    Chen, Jianjun
    Liao, Xin
    Wang, Mingming
    Liu, Zhaoxiang
    Zhang, Judong
    Ding, Lijuan
    Gao, Li
    Li, Ye
    NANOSCALE, 2015, 7 (14) : 6374 - 6379
  • [48] The fabrication technique and electrical properties of a free-standing GaN nanowire
    H.Y. Yu
    B.H. Kang
    C.W. Park
    U.H. Pi
    C.J. Lee
    S.-Y. Choi
    Applied Physics A, 2005, 81 : 245 - 247
  • [49] Free-Standing Aluminium Nanowire Architectures Made in an Ionic Liquid
    El Abedin, Sherif Zein
    Endres, Frank
    CHEMPHYSCHEM, 2012, 13 (01) : 250 - 255
  • [50] The fabrication technique and electrical properties of a free-standing GaN nanowire
    Yu, HY
    Kang, BH
    Park, CW
    Pi, UH
    Lee, CJ
    Choi, SY
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (02): : 245 - 247