Automated Epileptic Seizure Detection in EEGs Using Increment Entropy

被引:0
|
作者
Liu, Xiaofeng [1 ]
Jiang, Aimin
Xu, Ning
机构
[1] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
ARTIFICIAL NEURAL-NETWORKS; APPROXIMATE ENTROPY; PERMUTATION ENTROPY; TIME-SERIES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an automated method for seizure detection in EEGs using an increment entropy (IncrEn) and support vector machines (SVMs). The IncrEn is a measure of the complexity of time series, which characterizes both the permutation of values and the temporal order of values. The IncrEn is used to extract features of epileptic EEGs and normal EEGs. The SVMs are employed to classify seizure EEGs from non-seizure ones. The maximum accuracy achieves 97.32%. The maximum sensitivity and the maximum specificity are 95.34% and 99.30%, respectively. The results indicate our approach using the IncrEn and SVMs is an effective tool to detect EEG seizure.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] MULTICENTER STUDY OF AUTOMATED SPIKE AND SEIZURE DETECTION IN OVERNIGHT EEGS OF NORMAL SUBJECTS
    ITO, M
    SCHACHTER, S
    DRISLANE, F
    WANNAMAKER, B
    RAK, I
    MATSUO, F
    GILLIAM, F
    JACKEL, R
    RUGGLES, K
    MORRIS, G
    MAINWARING, N
    IVES, J
    SCHOMER, D
    [J]. EPILEPSIA, 1995, 36 : J1 - J1
  • [22] Epileptic Seizure Detection With Permutation Fuzzy Entropy Using Robust Machine Learning Techniques
    Hussain, Waqar
    Wang, Bin
    Niu, Yan
    Gao, Yuan
    Wang, Xin
    Sun, Jie
    Zhan, Qionghui
    Cao, Rui
    Mengni, Zhou
    Iqbal, Muhammad Shahid
    Xiang, Jie
    [J]. IEEE ACCESS, 2019, 7 : 182238 - 182258
  • [23] Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
    Guo, Ling
    Rivero, Daniel
    Dorado, Julian
    Rabunal, Juan R.
    Pazos, Alejandro
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2010, 191 (01) : 101 - 109
  • [24] An automated epileptic seizure detection using optimized neural network from EEG signals
    Chanu, Maibam Mangalleibi
    Singh, Ngangbam Herojit
    Thongam, Khelchandra
    [J]. EXPERT SYSTEMS, 2023, 40 (06)
  • [25] Automated Epileptic Seizure Detection using Improved Crystal Structure Algorithm with Stacked Autoencoder
    Cherukuvada, Srikanth
    Kayalvizhi, R.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 479 - 486
  • [26] Automated EEG-Based Epileptic Seizure Detection Using Deep Neural Networks
    Birjandtalab, J.
    Heydarzadeh, M.
    Nourani, M.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2017, : 552 - 555
  • [27] Spectral exponent characteristics of intracranial EEGs for epileptic seizure classification
    Janjarasjitt, S.
    [J]. IRBM, 2015, 36 (01) : 33 - 39
  • [28] EEG Signal Classification and Segmentation for Automated Epileptic Seizure Detection using SVM Classifier
    Nanthini, Suguna B.
    Santhi, B.
    [J]. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (06): : 1231 - 1238
  • [29] New feature extraction for automated detection of epileptic seizure using complex network framework
    Supriya, Supriya
    Siuly, Siuly
    Wang, Hua
    Zhang, Yanchun
    [J]. APPLIED ACOUSTICS, 2021, 180
  • [30] Application of wavelet fractal features for the automated detection of epileptic seizure using electroencephalogram signals
    Upadhyay, Rahul
    Jharia, Swati
    Padhy, Prabin Kumar
    Kankar, Pavan Kumar
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2015, 19 (04) : 355 - 372