Automated Epileptic Seizure Detection in EEGs Using Increment Entropy

被引:0
|
作者
Liu, Xiaofeng [1 ]
Jiang, Aimin
Xu, Ning
机构
[1] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
ARTIFICIAL NEURAL-NETWORKS; APPROXIMATE ENTROPY; PERMUTATION ENTROPY; TIME-SERIES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an automated method for seizure detection in EEGs using an increment entropy (IncrEn) and support vector machines (SVMs). The IncrEn is a measure of the complexity of time series, which characterizes both the permutation of values and the temporal order of values. The IncrEn is used to extract features of epileptic EEGs and normal EEGs. The SVMs are employed to classify seizure EEGs from non-seizure ones. The maximum accuracy achieves 97.32%. The maximum sensitivity and the maximum specificity are 95.34% and 99.30%, respectively. The results indicate our approach using the IncrEn and SVMs is an effective tool to detect EEG seizure.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy
    Mohammadpoory, Zeynab
    Nasrolahzadeh, Manda
    Haddadnia, Javad
    [J]. SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 50 : 202 - 208
  • [2] Epileptic Seizure Detection in EEGs Using Time-Frequency Analysis
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Fotiadis, Dimitrios I.
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 703 - 710
  • [3] Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    Song, Yuedong
    Crowcroft, Jon
    Zhang, Jiaxiang
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2012, 210 (02) : 132 - 146
  • [4] Epileptic Seizure Detection in Clinical EEGs Using an XGboost-based Method
    Wei, L.
    Mooney, C.
    [J]. 2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [5] Epileptic Seizure Detection and Prediction in EEGs Using Power Spectra Density Parameterization
    Liu, Shan
    Wang, Jiang
    Li, Shanshan
    Cai, Lihui
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3884 - 3894
  • [6] Epileptic seizure detection in EEG using improved entropy
    Gini, Arumai Thangam Phareson
    Queen, Manuel Packiaselvam Flower
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 33 (04) : 325 - 345
  • [7] Epileptic Seizure Detection Using EEGs Based on Kernel Radius of Intrinsic Mode Functions
    Li, Qiang
    Ye, Meina
    Song, Jiang-Ling
    Zhang, Rui
    [J]. HEALTH INFORMATION SCIENCE (HIS 2017), 2017, 10594 : 11 - 21
  • [8] Seizure Detection in Temporal Lobe Epileptic EEGs Using the Best Basis Wavelet Functions
    Berdakh Abibullaev
    Min Soo Kim
    Hee Don Seo
    [J]. Journal of Medical Systems, 2010, 34 : 755 - 765
  • [9] Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm
    Zhu, Guohun
    Li, Yan
    Wen, Peng
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (02) : 64 - 75
  • [10] Seizure Detection in Temporal Lobe Epileptic EEGs Using the Best Basis Wavelet Functions
    Abibullaev, Berdakh
    Kim, Min Soo
    Seo, Hee Don
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2010, 34 (04) : 755 - 765