A new topological aspect in the O(n) symmetric time-dependent Ginzburg-Landau model

被引:16
|
作者
Duan, YS [1 ]
Jiang, Y [1 ]
Xu, T [1 ]
机构
[1] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
关键词
D O I
10.1016/S0375-9601(98)00959-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the aid of phi-mapping topological current theory, the topological structure of vortices and the topological quantization of their topological charges in the TDGL model are obtained under the condition that the Jacobian D(phi/x) not equal 0. When D(phi/x) = 0, it is shown that there exists the crucial branch process case. Based on the implicit function theorem and the Taylor expansion, we detail the bifurcation of the vortex topological current and find different directions of the bifurcation. The vortices in the TDGL model are found to be multiply charged at the degenerate points of the order parameter field function phi. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 50 条
  • [41] Time-dependent Ginzburg-Landau model for nonfrustrated linear ABC triblock terpolymers
    Millett, Paul C.
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [42] A COMPUTER-SIMULATION OF THE TIME-DEPENDENT GINZBURG-LANDAU MODEL FOR SPINODAL DECOMPOSITION
    PETSCHEK, R
    METIU, H
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (07): : 3443 - 3456
  • [43] The time-dependent Ginzburg-Landau equation for the two-velocity difference model
    Wu Shu-Zhen
    Cheng Rong-Jun
    Ge Hong-Xia
    CHINESE PHYSICS B, 2011, 20 (08)
  • [44] Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity
    Rodriguez-Bernal, A
    Wang, BX
    Willie, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (18) : 1647 - 1669
  • [45] LINEAR RESPONSE THEORY AND TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS
    HOUGHTON, A
    PHYSICAL REVIEW B, 1971, 3 (05): : 1625 - &
  • [46] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    D. Chae
    J. Han
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 244 - 257
  • [47] Time-dependent Ginzburg-Landau approach and its application to superconductivity
    Zagrodzinski, JA
    Nikiciuk, T
    Abal'osheva, IS
    Lewandowski, SJ
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2003, 16 (08): : 936 - 940
  • [48] A convex splitting method for the time-dependent Ginzburg-Landau equation
    Wang, Yunxia
    Si, Zhiyong
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 999 - 1017
  • [49] Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity
    Gunter, DO
    Kaper, HG
    Leaf, GK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06): : 1943 - 1958
  • [50] Time-dependent Ginzburg-Landau equations for rotating and accelerating superconductors
    Lipavsky, P.
    Bok, J.
    Kolacek, J.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 492 : 144 - 151