A constitutive equation for magneto rheological fluid characterization

被引:0
|
作者
Ciocanel, C [1 ]
Lipscomb, G [1 ]
Naganathan, NG [1 ]
机构
[1] Univ Toledo, MIME Dept, Toledo, OH 43606 USA
关键词
magnetorheological fluids; constitutive equations; particle suspensions;
D O I
10.1117/12.620082
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A microstructural model of the motion of particle pairs in MR fluids is proposed that accounts for both hydrodynamic and magnetic field forces. A fluid constitutive equation is derived.. from the model that allows the prediction of velocity and particle structure fields. The analysis is similar to that of bead-spring models of polymeric liquids with replacement of the elastic connector force by a magnetic force. Results for simple shear flow are presented for the case when the two particles remain in close contact so they are hydrodynamically equivalent to an ellipsoid with an aspect ratio of two and only the component of the magnetic force normal to the connecting vector between the centers of the two particles affects motion. The model predicts oscillatory motion of the particle pairs at low magnetic fields. The fluid reaches a steady state at high magnetic fields. The time required to reach the steady state for a given shear rate reduces significantly as the field increases.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 50 条
  • [21] Study on operational temperature of magneto-rheological fluid and design dimensions of magneto-rheological damper for optimization
    Kariganaur, Ashok Kumar
    Kumar, Hemantha
    Arun, M.
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [22] Magneto-rheological fluid behavior in squeeze mode
    Farjoud, Alireza
    Cavey, Ryan
    Ahmadian, Mehdi
    Craft, Michael
    SMART MATERIALS AND STRUCTURES, 2009, 18 (09)
  • [23] Magneto-rheological fluid under magnetic disturbances
    Sandoval, U.
    Carrillo, J. L.
    Donado, F.
    REVISTA MEXICANA DE FISICA E, 2010, 56 (01): : 123 - 133
  • [24] Magneto-rheological fluid dampers for control of bridges
    Gordaninejad, F
    Saiidi, M
    Hansen, BC
    Ericksen, EO
    Chang, FK
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2002, 13 (2-3) : 167 - 180
  • [25] Magneto-rheological fluid shock absorbers for HMMWV
    Gordaninejad, F
    Kelso, SP
    SMART STRUCTURES AND MATERIALS 2000: DAMPING AND ISOLATION, 2000, 3989 : 266 - 273
  • [26] Synthesis and characterization of cost effective and eco-friendly magneto rheological fluid for aerospace applications
    Praveen, Ankamreddi
    Jagadeesha, T.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [27] Design of magneto-rheological fluid based device
    Kim, JH
    Lee, CW
    Jung, BB
    Park, Y
    Cao, GZ
    KSME INTERNATIONAL JOURNAL, 2001, 15 (11): : 1517 - 1523
  • [28] Fabrication of Magneto-rheological Fluid with Double Frameworks
    Guojie, Lee
    Huang Jie
    Pang Xuedong
    Chen Xingchi
    2018 13TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS 2018), 2018, : 627 - 630
  • [29] Experimental research of Magneto-rheological fluid clutch
    Shen, YL
    Yang, SP
    Pan, CZ
    2005 IEEE International Conference on Vehicular Electronics and Safety Proceedings, 2005, : 104 - 107
  • [30] Tribological Characteristics in Modified Magneto-rheological Fluid
    Lee, Deuk-Won
    Choi, Jae-Young
    Cho, Myeong-Woo
    Lee, Chul-Hee
    Cho, Won-Oh
    Yun, Hyuk-Chae
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 225 - +