Deep learning-based model for diagnosing Alzheimer's disease and tauopathies

被引:29
|
作者
Koga, Shunsuke [1 ]
Ikeda, Akihiro [2 ]
Dickson, Dennis W. [1 ]
机构
[1] Mayo Clin, Dept Neurosci, 4500 San Pablo Rd South, Jacksonville, FL 32224 USA
[2] Osaka City Univ, Sch Med, Osaka, Japan
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; corticobasal degeneration; machine learning; object detection; Pick's disease; progressive supranuclear palsy; random forest classifier; PROGRESSIVE SUPRANUCLEAR PALSY; NINDS NEUROPATHOLOGIC CRITERIA; TAU; BRAIN;
D O I
10.1111/nan.12759
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Aims This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostained digital slide images. Methods We trained the YOLOv3 object detection algorithm to detect five tau lesion types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and coiled bodies. We used 2522 digital slide images of CP13-immunostained slides of the motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation was performed to increase the size of the training dataset. We next constructed random forest classifiers using the quantitative burdens of each tau lesion from motor cortex, caudate nucleus and superior frontal gyrus, ascertained from the object detection model. We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test (30 cases) sets to train random forest classifiers. Results The resultant random forest classifier achieved an average test score of 0.97, indicating that 29 out of 30 cases were correctly diagnosed. A validation study using hold-out datasets of CP13- and AT8-stained slides from 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data augmentation) diagnostic accuracy in both CP13- and AT8-stained slides. Conclusion Our diagnostic model trained with CP13 also works for AT8; therefore, our diagnostic tool can be potentially used by other investigators and may assist medical decision-making in neuropathological diagnoses of tauopathies.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [2] Feasibility of self-supervised learning for diagnosing Alzheimer's disease and tauopathies
    Koga, S.
    Jo, B.
    Kim, M.
    Ono, D.
    Sekiya, H.
    Dickson, D.
    Hwang, T.
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2023, 82 (06): : 548 - 548
  • [3] Deep Learning-based Diagnostic Model for Alzheimer's Disease, PSP, CBD, and Pick's Disease
    Koga, Shunsuke
    Dickson, Dennis
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2021, 80 (06): : 593 - 593
  • [4] Deep Learning-Based Segmentation in Classification of Alzheimer's Disease
    Buvaneswari, P. R.
    Gayathri, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5373 - 5383
  • [5] Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
    P. R. Buvaneswari
    R. Gayathri
    Arabian Journal for Science and Engineering, 2021, 46 : 5373 - 5383
  • [6] An Interpretable Machine Learning Model with Deep Learning-Based Imaging Biomarkers for Diagnosis of Alzheimer's Disease
    Kang, Wenjie
    Li, Bo
    Papma, Janne M.
    Jiskoot, Lize C.
    De Deyn, Peter Paul
    Biessels, Geert Jan
    Claassen, Jurgen A. H. R.
    Middelkoop, Huub A. M.
    van der Flier, Wiesje M.
    Ramakers, Inez H. G. B.
    Klein, Stefan
    Bron, Esther E.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023 WORKSHOPS, 2023, 14393 : 69 - 78
  • [7] MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction
    Saratxaga, Cristina L.
    Moya, Iratxe
    Picon, Artzai
    Acosta, Marina
    Moreno-Fernandez-de-Leceta, Aitor
    Garrote, Estibaliz
    Bereciartua-Perez, Arantza
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [8] Deep learning-based polygenic risk analysis for Alzheimer's disease prediction
    Zhou, Xiaopu
    Chen, Yu
    Ip, Fanny C. F.
    Jiang, Yuanbing
    Cao, Han
    Lv, Ge
    Zhong, Huan
    Chen, Jiahang
    Ye, Tao
    Chen, Yuewen
    Zhang, Yulin
    Ma, Shuangshuang
    Lo, Ronnie M. N.
    Tong, Estella P. S.
    Mok, Vincent C. T.
    Kwok, Timothy C. Y.
    Guo, Qihao
    Mok, Kin Y.
    Shoai, Maryam
    Hardy, John
    Chen, Lei
    Fu, Amy K. Y.
    Ip, Nancy Y.
    COMMUNICATIONS MEDICINE, 2023, 3 (01):
  • [9] Deep Learning-based Feature Extraction in Neuroimaging Genetics for Alzheimer's Disease
    Chakraborty, Dipnil
    Zhuang, Zhong
    Xue, Haoran
    Pan, Wei
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 747 - 747
  • [10] Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction
    Xiaopu Zhou
    Yu Chen
    Fanny C. F. Ip
    Yuanbing Jiang
    Han Cao
    Ge Lv
    Huan Zhong
    Jiahang Chen
    Tao Ye
    Yuewen Chen
    Yulin Zhang
    Shuangshuang Ma
    Ronnie M. N. Lo
    Estella P. S. Tong
    Vincent C. T. Mok
    Timothy C. Y. Kwok
    Qihao Guo
    Kin Y. Mok
    Maryam Shoai
    John Hardy
    Lei Chen
    Amy K. Y. Fu
    Nancy Y. Ip
    Communications Medicine, 3