Feasibility of self-supervised learning for diagnosing Alzheimer's disease and tauopathies

被引:0
|
作者
Koga, S. [1 ]
Jo, B. [2 ]
Kim, M. [2 ]
Ono, D. [1 ]
Sekiya, H. [1 ]
Dickson, D. [1 ]
Hwang, T. [2 ,3 ,4 ]
机构
[1] Mayo Clin, Dept Neurosci, Jacksonville, FL USA
[2] Mayo Clin, Dept Artificial Intelligence & Informat Res, Jacksonville, FL USA
[3] Mayo Clin, Dept Canc Biol, Jacksonville, FL USA
[4] Mayo Clin, Dept Immunol, Jacksonville, FL USA
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
140
引用
收藏
页码:548 / 548
页数:1
相关论文
共 50 条
  • [1] ON SELF-SUPERVISED MULTIMODAL REPRESENTATION LEARNING: AN APPLICATION TO ALZHEIMER'S DISEASE
    Fedorov, Alex
    Wu, Lei
    Sylvain, Tristan
    Luck, Margaux
    DeRamus, Thomas P.
    Bleklov, Dmitry
    Plis, Sergey M.
    Calhoun, Vince D.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1548 - 1552
  • [2] Deep learning-based model for diagnosing Alzheimer's disease and tauopathies
    Koga, Shunsuke
    Ikeda, Akihiro
    Dickson, Dennis W.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2022, 48 (01)
  • [3] Detecting Early Risk of Alzheimer's Disease Using Self-Supervised Multimodal Representation Learning
    Intriago, Jhon A.
    Estevez, Pablo A.
    Cortes-Briones, Jose A.
    Okuma, Cecilia A.
    Ilenriquez, Fernando A.
    Lillo, Patricia
    Slachevsky, Andrea L.
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 158 - 160
  • [4] Self-Supervised Multimodal Domino: in Search of Biomarkers for Alzheimer's Disease
    Fedorov, Alex
    Sylvain, Tristan
    Geenjaar, Eloy
    Luck, Margaux
    Wu, Lei
    DeRamus, Thomas R.
    Kirilin, Alex
    Bleklov, Dmitry
    Calhoun, Vince D.
    Plis, Sergey M.
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 23 - 30
  • [5] Parkinson's Disease Classification with Self-supervised Learning and Attention Mechanism
    Zhang, Yuchen
    Lei, Haijun
    Huang, Zhongwei
    Zhao, Menglu
    Li, Zhen
    Liu, Chuan-Ming
    Lei, Baiying
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4601 - 4607
  • [6] Weak self-supervised learning for seizure forecasting: a feasibility study
    Yang, Yikai
    Truong, Nhan Duy
    Eshraghian, Jason K.
    Nikpour, Armin
    Kavehei, Omid
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (08):
  • [7] A simple self-supervised learning framework with patch-based data augmentation in diagnosis of Alzheimer's disease
    Gong, Haoqiang
    Wang, Zhiwen
    Huang, Shuaihui
    Wang, Jinfeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [8] Self-Supervised Contrastive Learning to Predict the Progression of Alzheimer's Disease with 3D Amyloid-PET
    Kwak, Min Gu
    Su, Yi
    Chen, Kewei
    Weidman, David
    Wu, Teresa
    Lure, Fleming
    Li, Jing
    BIOENGINEERING-BASEL, 2023, 10 (10):
  • [9] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [10] Augmented Adversarial Self-Supervised Learning for Early-Stage Alzheimer's Speech Detection
    Yang, Longfei
    Wei, Wenqing
    Li, Sheng
    Li, Jiyi
    Shinozaki, Takahiro
    INTERSPEECH 2022, 2022, : 541 - 545