Is Beta-t-EGARCH(1,1) superior to GARCH(1,1)?

被引:11
|
作者
Blazsek, Szabolcs [1 ]
Villatoro, Marco [1 ]
机构
[1] Univ Francisco Marroquin, Sch Business, Guatemala City, Guatemala
关键词
Beta-t-EGARCH; density forecasts; United States financial crisis of 2008; global industry indices; VOLATILITY MODELS; CONDITIONAL HETEROSKEDASTICITY; FORECASTS;
D O I
10.1080/00036846.2014.1000536
中图分类号
F [经济];
学科分类号
02 ;
摘要
Statistical performance, in-sample point forecast precision and out-of-sample density forecast precision of GARCH(1,1) and Beta-t-EGARCH(1,1) models are compared. We study the volatility of nine global industry indices for period from April 2006 to July 2010. Competing models are estimated for periods before, during and after the United States (US) financial crisis of 2008. The results provide evidence of the superior out-of-sample predictive performance of Beta-t-EGARCH compared to GARCH after the US financial crisis.
引用
收藏
页码:1764 / 1774
页数:11
相关论文
共 50 条
  • [1] Coupled GARCH(1,1) model
    Nie, Huasheng
    Waelbroeck, Henri
    QUANTITATIVE FINANCE, 2023, 23 (05) : 759 - 776
  • [2] Minkowski Metric for GARCH(1,1)
    Kanjamapornkul, Kabin
    Kijsirikul, Boonserm
    Mathew, Jimson
    2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS (ICECCS 2014), 2014, : 295 - 302
  • [3] Coupled GARCH(1,1) model
    Nie, Huasheng
    Waelbroeck, Henri
    QUANTITATIVE FINANCE, 2021,
  • [4] The extremal index for GARCH(1,1) processes
    Laurini, Fabrizio
    Tawn, Jonathan A.
    EXTREMES, 2012, 15 (04) : 511 - 529
  • [5] STATIONARITY AND PERSISTENCE IN THE GARCH(1,1) MODEL
    NELSON, DB
    ECONOMETRIC THEORY, 1990, 6 (03) : 318 - 334
  • [6] An asymptotic expansion in the GARCH(1,1) model
    Linton, O
    ECONOMETRIC THEORY, 1997, 13 (04) : 558 - 581
  • [7] The pitfalls in fitting GARCH(1,1) processes
    Zumbach, G
    ADVANCES IN QUANTITATIVE ASSET MANAGEMENT, 2000, 1 : 179 - 200
  • [8] On the limit theory of the Gaussian SQMLE in the EGARCH(1,1) model
    Arvanitis, Stelios
    Anyfantaki, Sofia
    JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (02) : 341 - 350
  • [9] GARCH(1,1)模型的M估计
    孙丛丛
    孟昭为
    山东理工大学学报(自然科学版), 2010, 24 (06) : 55 - 57
  • [10] GARCH(1,1) ESTIMATION VIA DIFFERENT METHODS
    Princ, Peter
    HRADECKE EKONOMICKE DNY 2014: EKONOMICKY ROZVOJ A MANAGEMENT REGIONU, DIL II, 2014, : 459 - 464