STATIONARITY AND PERSISTENCE IN THE GARCH(1,1) MODEL

被引:465
|
作者
NELSON, DB
机构
关键词
D O I
10.1017/S0266466600005296
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper establishes necessary and sufficient conditions for the stationarity and ergodicity of the GARCH(l.l) process. As a special case, it is shown that the IGARCH(1,1) process with no drift converges almost surely to zero, while IGARCH(1,1) with a positive drift is strictly stationary and ergodic. We examine the persistence of shocks to conditional variance in the GARCH(l.l) model, and show that whether these shocks “persist” or not depends crucially on the definition of persistence. We also develop necessary and sufficient conditions for the finiteness of absolute moments of any (including fractional) order. © 1990, Cambridge University Press. All rights reserved.
引用
收藏
页码:318 / 334
页数:17
相关论文
共 50 条
  • [1] Structural change and estimated persistence in the GARCH(1,1)-model
    Kraemer, Walter
    Azamo, Baudouin Tameze
    [J]. ECONOMICS LETTERS, 2007, 97 (01) : 17 - 23
  • [2] Coupled GARCH(1,1) model
    Nie, Huasheng
    Waelbroeck, Henri
    [J]. QUANTITATIVE FINANCE, 2023, 23 (05) : 759 - 776
  • [3] Coupled GARCH(1,1) model
    Nie, Huasheng
    Waelbroeck, Henri
    [J]. QUANTITATIVE FINANCE, 2021,
  • [4] An asymptotic expansion in the GARCH(1,1) model
    Linton, O
    [J]. ECONOMETRIC THEORY, 1997, 13 (04) : 558 - 581
  • [5] Volatility Persistence and Predictability of Squared Returns in GARCH (1,1) Models
    Triacca, Umberto
    [J]. CENTRAL EUROPEAN JOURNAL OF ECONOMIC MODELLING AND ECONOMETRICS, 2009, 1 (03): : 285 - 291
  • [6] A Model Specification Test For GARCH(1,1) Processes
    Leucht, Anne
    Kreiss, Jens-Peter
    Neumann, Michael H.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) : 1167 - 1193
  • [7] News augmented GARCH(1,1) model for volatility prediction
    Sadik, Zryan A.
    Date, Paresh M.
    Mitra, Gautam
    [J]. IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2019, 30 (02) : 165 - 185
  • [8] GARCH(1,1) Model of the Financial Market with the Minkowski Metric
    Pincak, Richard
    Kanjamapornkul, Kabin
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (08): : 669 - 684
  • [9] Interval estimation of the tail index of a GARCH(1,1) model
    Ngai Hang Chan
    Liang Peng
    Rongmao Zhang
    [J]. TEST, 2012, 21 : 546 - 565
  • [10] A closed-form estimator for the GARCH(1,1) model
    Kristensen, D
    Linton, O
    [J]. ECONOMETRIC THEORY, 2006, 22 (02) : 323 - 337