Generalized dynamic linear models for financial time series

被引:2
|
作者
Campagnoli, P
Muliere, P
Petrone, S
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] Univ L Bocconi, Ist Metodi Quantitat, I-30126 Milan, Italy
[3] Univ Insubria, Fac Econ, I-21100 Varese, Italy
关键词
dynamic linear models; conditionally Gaussian models; Kalman filter; stochastic regressors; stochastic volatility; GARCH models;
D O I
10.1002/asmb.428
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we consider a class of conditionally Gaussian state-space models and discuss how they can provide a flexible and fairly simple tool for modelling financial time series, even in the presence of different components in the series, or of stochastic volatility. Estimation can be computed by recursive equations, which provide the optimal solution under rather mild assumptions. In more general models, the filter equations can still provide approximate solutions. We also discuss how some models traditionally employed for analysing financial time series can be regarded in the state-space framework. Finally, we illustrate the models in two examples to real data sets. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 50 条
  • [41] TIME-VARYING COPULA MODELS FOR FINANCIAL TIME SERIES
    Kiesel, Ruediger
    Mroz, Magda
    Stadtmueller, Ulrich
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (0A) : 159 - 180
  • [42] Multifractality approach of a generalized Shannon index in financial time series
    Abril-Bermudez, Felipe S.
    Trinidad-Segovia, Juan E.
    Sanchez-Granero, Miguel A.
    Quimbay-Herrera, Carlos J.
    PLOS ONE, 2024, 19 (06):
  • [43] Dynamic tail dependence clustering of financial time series
    Giovanni De Luca
    Paola Zuccolotto
    Statistical Papers, 2017, 58 : 641 - 657
  • [44] Multivariate Dynamic Kernels for Financial Time Series Forecasting
    Pena, Mauricio
    Arratia, Argimiro
    Belanche, Lluis A.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 336 - 344
  • [45] Dynamic tail dependence clustering of financial time series
    De Luca, Giovanni
    Zuccolotto, Paola
    STATISTICAL PAPERS, 2017, 58 (03) : 641 - 657
  • [46] Parameterizing unconditional skewness in models for financial time series
    He, Changli
    Silvennoinen, Annastiina
    Teraesvirta, Timo
    JOURNAL OF FINANCIAL ECONOMETRICS, 2008, 6 (02) : 208 - 230
  • [47] STABLE GARCH MODELS FOR FINANCIAL TIME-SERIES
    PANORSKA, AK
    MITTNIK, S
    RACHEV, ST
    APPLIED MATHEMATICS LETTERS, 1995, 8 (05) : 33 - 37
  • [48] A recent overview on financial and special time series models
    Hwang, S. Y.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (01) : 1 - 12
  • [49] DYNAMIC GENERALIZED LINEAR-MODELS AND REPEATED MEASUREMENTS
    LINDSEY, JK
    LAMBERT, P
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 47 (1-2) : 129 - 139
  • [50] Dynamic generalized linear models with application to environmental epidemiology
    Chiogna, M
    Gaetan, C
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2002, 51 : 453 - 468