Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries

被引:37
|
作者
Zhang, Dapeng [1 ]
Yang, Zengxu [1 ]
Zhang, Junshu [1 ]
Mao, Hongzhi [1 ]
Yang, Jian [1 ]
Qian, Yitai [1 ,2 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, State Educ Minist, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
关键词
Prussian blue; Carbon nanotubes; Nanostructures; Cathode; Rechargeable aqueous batteries; PRUSSIAN BLUE; SUPERIOR CATHODE; INTERCALATION CHEMISTRY; ELECTRODE MATERIALS; HIGH-VOLTAGE; SODIUM; PERFORMANCE; WATER; SUPERCAPACITORS; NANOPARTICLES;
D O I
10.1016/j.jpowsour.2018.07.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prussian blue (PB) and its analogues (PBAs) have been regarded as one of promising electrode candidates in aqueous batteries, due to its open framework, robust skeleton, and simple preparation protocol. However, intrinsic structure vacancies and poor electron conductivity lower their electrochemical performances, particularly in terms of reversible capacity, rate capability, and cycling stability. Here, truncated cobalt hexacyano-ferrate nanocubes threaded by carbon nanotubes are synthesized with the assistances of citrate and glycerol. The low content of structure vacancies in cobalt hexacyanoferrate, and the intimate contact between it and carbon nanotubes, well address the above issues, resulting in excellent performances in rechargeable aqueous batteries. The reversible capacity reaches 107.2 mAh g(-1) at 0.1 A g(-1), 87.3% of which is kept at 5 A g(-1). After paired with Zn foil as a dual-ion full cell, it delivers a high energy of 107.1 Wh kg(cathode)(-1) at 7.87 kW kg(cathode)(-1), exhibiting the high energy and high power simultaneously. All these results indicate the promising potential of this composite in rechargeable aqueous batteries.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] High-Entropy Prussian Blue Analogues as High-Capacity Cathode Material for Potassium Ion Batteries
    Yan, Wenlong
    Feng, Xi
    Min, Xin
    Ma, Bin
    Liu, Yangai
    Mi, Ruiyu
    Wu, Xiaowen
    Wang, Wei
    Huang, Zhaohui
    Fang, Minghao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (08)
  • [32] Morphological engineering of PTAm@CNTs cathode for high-rate potassium dual-ion battery
    Wu, Zhenzhen
    Shi, Yanlin
    Mudugamuwa, Chanaka J.
    Yang, Pan
    Chen, Hao
    Tian, Yuhui
    Kiefel, Milton
    Zhang, Shanqing
    Jia, Zhongfan
    JOURNAL OF POWER SOURCES, 2024, 616
  • [33] Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries
    Choi, Jaeho
    Byun, Woo Jin
    Kang, DongHwan
    Lee, Jung Kyoo
    ENERGIES, 2021, 14 (05)
  • [34] Dual-ion intercalation to enable high-capacity VOPO4 cathodes for Na-ion batteries
    Zhang, Ziheng
    Ni, Yang
    Avdeev, Maxim
    Kan, Wang Hay
    He, Guang
    ELECTROCHIMICA ACTA, 2021, 365
  • [35] Carbon nanofoam paper enables high-rate and high-capacity Na-ion storage
    DeBlock, Ryan H.
    Ko, Jesse S.
    Sassin, Megan B.
    Hoffmaster, Ashley N.
    Dunn, Bruce S.
    Rolison, Debra R.
    Long, Jeffrey W.
    ENERGY STORAGE MATERIALS, 2019, 21 : 481 - 486
  • [36] Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries
    Chai, Yujun
    Du, Yongheng
    Li, Ling
    Wang, Ning
    NANOTECHNOLOGY, 2020, 31 (21)
  • [37] Design of high-entropy P2/O3 hybrid layered oxide cathode material for high-capacity and high-rate sodium-ion batteries
    Hao, Dingbang
    Zhang, Gaoyuan
    Ning, De
    Zhou, Dong
    Chai, Yan
    Xu, Jin
    Yin, Xingxing
    Du, Ruijie
    Schuck, Goetz
    Wang, Jun
    Li, Yongli
    NANO ENERGY, 2024, 125
  • [38] Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries
    Qinqin Xiong
    Xiaojing Teng
    Jingjing Lou
    Guoxiang Pan
    Xinhui Xia
    Hongzhong Chi
    Xiaoxiao Lu
    Tao Yang
    Zhenguo Ji
    Journal of Energy Chemistry, 2020, (01) : 1 - 6
  • [39] Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries
    Xiong, Qinqin
    Teng, Xiaojing
    Lou, Jingjing
    Pan, Guoxiang
    Xia, Xinhui
    Chi, Hongzhong
    Lu, Xiaoxiao
    Yang, Tao
    Ji, Zhenguo
    JOURNAL OF ENERGY CHEMISTRY, 2020, 40 : 1 - 6
  • [40] Polyaniline Nanorod Arrays as a Cathode Material for High-Rate Zinc-Ion Batteries
    Fu, Xudong
    Zhang, Wenwei
    Lan, Binxu
    Wen, Jiexin
    Zhang, Shuai
    Luo, Ping
    Zhang, Rong
    Hu, Shengfei
    Liu, Qingting
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) : 12360 - 12367