Adiabatic optimization versus diffusion Monte Carlo methods

被引:24
|
作者
Jarret, Michael [1 ,2 ]
Jordan, Stephen P. [1 ,3 ]
Lackey, Brad [1 ,4 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] NIST, Gaithersburg, MD 20899 USA
[4] Natl Secur Agcy, Ft Gg Meade, MD 20755 USA
关键词
QUANTUM COMPUTATION; COMPLEXITY; ALGORITHM;
D O I
10.1103/PhysRevA.94.042318
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L-1 and L-2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k-SAT at k = 2,3,4.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
    Bringewatt, Jacob
    Dorland, William
    Jordan, Stephen P.
    Mink, Alan
    [J]. PHYSICAL REVIEW A, 2018, 97 (02)
  • [2] Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization
    Brady, Lucas T.
    van Dam, Wim
    [J]. PHYSICAL REVIEW A, 2016, 93 (03)
  • [3] Introduction to the Variational and Diffusion Monte Carlo Methods
    Toulouse, Julien
    Assaraf, Roland
    Umrigar, Cyrus J.
    [J]. ELECTRON CORRELATION IN MOLECULES - AB INITIO BEYOND GAUSSIAN QUANTUM CHEMISTRY, 2016, 73 : 285 - 314
  • [4] Monte Carlo methods for convective diffusion equations
    Simonov, NA
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1997, 12 (01) : 67 - 81
  • [5] Sequential Monte Carlo methods for diffusion processes
    Jasra, Ajay
    Doucet, Arnaud
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112): : 3709 - 3727
  • [6] Bilinear diffusion quantum Monte Carlo methods
    de Saavedra, FA
    Kalos, MH
    [J]. PHYSICAL REVIEW E, 2003, 67 (02):
  • [7] Monte Carlo methods for discrete stochastic optimization
    Homem-De-Mello, T
    [J]. STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 : 97 - 119
  • [8] On the optimization of approximate integration by Monte Carlo methods
    V. F. Babenko
    [J]. Ukrainian Mathematical Journal, 1997, 49 (4) : 523 - 528
  • [9] On Solving Singular Diffusion Equations With Monte Carlo Methods
    Mukhtar, Q.
    Hellsten, T.
    Johnson, T.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (09) : 2185 - 2189
  • [10] Diffusion Monte Carlo methods with a fixed number of walkers
    Assaraf, R
    Caffarel, M
    Khelif, A
    [J]. PHYSICAL REVIEW E, 2000, 61 (04): : 4566 - 4575