Task Allocation for Multi-Agent Systems Based on Distributed Many-Objective Evolutionary Algorithm and Greedy Algorithm

被引:36
|
作者
Zhou, Jing [1 ,2 ]
Zhao, Xiaozhe [1 ]
Zhang, Xiaopan [3 ]
Zhao, Dongdong [4 ]
Li, Huanhuan [5 ]
机构
[1] Dalian Univ Technol, Fac Management & Econ, Dalian 116024, Peoples R China
[2] Dalian Navy Acad, Operat Software & Simulat Inst, Dalian 116018, Peoples R China
[3] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Peoples R China
[4] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
[5] China Univ Geosci, Sch Comp Sci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary algorithm; Greedy algorithm; multi-agent system; NSGA3; task allocation; OPTIMIZATION;
D O I
10.1109/ACCESS.2020.2967061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Task allocation is a key issue in multi-agent systems, and finding the optimal strategy for task allocation has been proved to be an NP-hard problem. Existing task allocation methods for multi-agent systems mainly adopt distributed full search strategies or local search strategies. The former requires a lot of computation and communication costs, while the latter cannot ensure the diversity and quality of solutions. Therefore, in this paper, we combine a distributed many-objective evolutionary algorithm called D-NSGA3 with a greedy algorithm to search the task allocation solutions, and we comprehensively consider the constraints related to space, time, energy consumption and agent function in multi-agent systems. Specifically, D-NSGA3 is used to optimize multiple objectives simultaneously so as to ensure the search capability and the diversity of solutions. Alternate search between D-NSGA3 and the greedy algorithm is conducted to enhance the local optimizing ability. Experimental results show that the proposed method can effectively solve large-scale task allocation problems (e.g., the number of agents is not less than 250, and that of tasks is not less than 1000). Compared with the existing work called MSEA, the proposed method could achieve better and more diverse solutions.
引用
收藏
页码:19306 / 19318
页数:13
相关论文
共 50 条
  • [21] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Jiaxin Chen
    Jinliang Ding
    Kay Chen Tan
    Qingda Chen
    Memetic Computing, 2021, 13 : 413 - 432
  • [22] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Chen, Jiaxin
    Ding, Jinliang
    Tan, Kay Chen
    Chen, Qingda
    MEMETIC COMPUTING, 2021, 13 (03) : 413 - 432
  • [23] A many-objective evolutionary algorithm based on three states for solving many-objective optimization problem
    Zhao, Jiale
    Zhang, Huijie
    Yu, Huanhuan
    Fei, Hansheng
    Huang, Xiangdang
    Yang, Qiuling
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Distributed greedy algorithm for multi-agent task assignment problem with submodular utility functions
    Qu, Guannan
    Brown, Dave
    Li, Na
    AUTOMATICA, 2019, 105 : 206 - 215
  • [25] Greedy Decentralized Auction-based Task Allocation for Multi-Agent Systems
    Braquet, Martin
    Bakolas, Efstathios
    IFAC PAPERSONLINE, 2021, 54 (20): : 675 - 680
  • [26] Many-objective optimization based on sub-objective evolutionary algorithm
    Jiang, Wenzhi (ytjwz@sohu.com), 1910, Beijing University of Aeronautics and Astronautics (BUAA) (41):
  • [27] Many-objective task allocation method based on D-NSGA-III algorithm for multi-UAVs
    Zhou J.
    Zhao X.
    Xu Z.
    Lin Z.
    Zhang X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (05): : 1240 - 1247
  • [28] A multistage evolutionary algorithm for many-objective optimization
    Shen, Jiangtao
    Wang, Peng
    Dong, Huachao
    Li, Jinglu
    Wang, Wenxin
    INFORMATION SCIENCES, 2022, 589 : 531 - 549
  • [29] A many-objective evolutionary algorithm based on fuzzy dominance: MFEA
    Bi, Xiao-Jun
    Zhang, Yong-Jian
    Chen, Chun-Yu
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1653 - 1659
  • [30] A Distributed Newton Algorithm for Optimal Resource Allocation in Multi-Agent Systems
    Ogwuru, Judith
    Guay, Martin
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4752 - 4757