High-performance N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-hexafluoropropylene) gel polymer electrolytes for lithium metal batteries

被引:38
|
作者
Pan, Xiaona [1 ,2 ]
Liu, Tianyi [2 ]
Kautz, David J. [2 ]
Mu, Linqin [2 ]
Tian, Chixia [2 ]
Long, Timothy E. [2 ,3 ]
Yang, Peixia [1 ]
Lin, Feng [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[3] Virginia Tech, Macromol Innovat Inst, Blacksburg, VA 24061 USA
基金
黑龙江省自然科学基金;
关键词
Lithium metal battery; Ionic liquid gel polymer electrolyte; Ionic conductivity; Interfacial chemistry; Freestanding; TEMPERATURE IONIC LIQUIDS; IN-SITU; VINYL MONOMERS; LI-O-2; BATTERY; MOLTEN-SALTS; CONDUCTIVITY; LAYER; ANODE; OXYGEN; FILMS;
D O I
10.1016/j.jpowsour.2018.09.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionically conductive polymer electrolytes represent a class of safe and environment-friendly electrolytes for next generation alkali metal batteries. Understanding the interplay between composition-driven interfacial processes and battery performance can fundamentally inform the design of polymer electrolytes for practical applications. In this study, we fabricate lithium metal batteries based on transparent free-standing ionic liquid gel polymer electrolytes (ILGPEs) and LiFePO4 cathodes. We develop the ILGPEs using a composite of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13TFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). A thorough compositional optimization shows that the lithium ion conductivity of the ILGPE increases with the increase of PP13TFSI and LiTFSI, reaching maxima of 1.3 mS cm(-1) at 23 degrees C and 5.82 mS cm(-1) at 80 degrees C when the ILGPE contains 60 wt% PP13TFSI and 20 wt% LiTFSI. The optimized ILGPE exhibits excellent interfacial stability against the lithium metal, as signified by the stable interfacial resistance upon long-term storage. The LiFePO4 vertical bar ILGPE vertical bar Li cells can deliver superior battery performance with a practical capacity approaching 89.5% of the theoretical capacity and capacity retention of 95.0% after 200 cycles. The formation of the electrode-electrolyte interphases takes place primarily during the initial cycles, which likely accounts for the activation period observed in LiFePO4 vertical bar ILGPE vertical bar Li cells.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条
  • [21] High-Performance Poly(vinylidene fluoride-hexafluoropropylene)-Based Composite Electrolytes with Excellent Interfacial Compatibility for Room-Temperature All-Solid-State Lithium Metal Batteries
    Du, Si-Yuan
    Ren, Guo-Xi
    Zhang, Nian
    Liu, Xiao-Song
    [J]. ACS OMEGA, 2022, 7 (23): : 19631 - 19639
  • [22] Synthesis, characterization and electrochemical properties of poly(methyl methacrylate)-grafted-poly(vinylidene fluoride-hexafluoropropylene) gel electrolytes
    Liu, Y
    Lee, JY
    Hong, L
    [J]. SOLID STATE IONICS, 2002, 150 (3-4) : 317 - 326
  • [23] Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide-N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries
    Wetjen, Morten
    Kim, Guk-Tae
    Joost, Mario
    Winter, Martin
    Passerini, Stefano
    [J]. ELECTROCHIMICA ACTA, 2013, 87 : 779 - 787
  • [24] Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries
    Li Libo
    Wang Jiajia
    Yang Peixia
    Guo Shaowen
    Wang Heng
    Yang Xiuchun
    Ma Xuwei
    Yang Shuo
    Wu Baohua
    [J]. ELECTROCHIMICA ACTA, 2013, 88 : 147 - 156
  • [25] A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) -poly(propylene carbonate) for solid-state lithium ion batteries
    Liang, Y. F.
    Xia, Y.
    Zhang, S. Z.
    Wang, X. L.
    Xia, X. H.
    Gu, C. D.
    Wu, J. B.
    Tu, J. P.
    [J]. ELECTROCHIMICA ACTA, 2019, 296 : 1064 - 1069
  • [26] Composite Poly(ethylene oxide) Electrolytes Plasticized by N-Alkyl-N-butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide for Lithium Batteries
    Wetjen, Morten
    Navarra, Maria Assunta
    Panero, Stefania
    Passerini, Stefano
    Scrosati, Bruno
    Hassoun, Jusef
    [J]. CHEMSUSCHEM, 2013, 6 (06) : 1037 - 1043
  • [27] Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries
    Yu, Shicheng
    Chen, Lie
    Chen, Yiwang
    Tong, Yongfen
    [J]. APPLIED SURFACE SCIENCE, 2012, 258 (11) : 4983 - 4989
  • [28] Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries
    Le, Hang T. T.
    Duc Tung Ngo
    Kalubarme, Ramchandra S.
    Cao, Guozhong
    Park, Choong-Nyeon
    Park, Chan-Jin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) : 20710 - 20719
  • [29] Electrochemical studies on nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) composite electrolytes for lithium batteries
    Manuel Stephan, A.
    Nahm, Kee Suk
    Anbu Kulandainathan, M.
    Ravi, G.
    Wilson, J.
    [J]. Journal of Applied Electrochemistry, 2006, 36 (10): : 1091 - 1097
  • [30] Electrochemical studies on nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) composite electrolytes for lithium batteries
    Stephan, A. Manuel
    Nahm, Kee Suk
    Kulandainathan, M. Anbu
    Ravi, G.
    Wilson, J.
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2006, 36 (10) : 1091 - 1097