Similarity measures of convex polygons

被引:0
|
作者
Tuzikov, AV [1 ]
Hejmance, H [1 ]
Margolin, GL [1 ]
Sheinin, SA [1 ]
机构
[1] Belorussian Natl Acad Sci, Inst Tech Cybernet, Minsk, BELARUS
来源
DOKLADY AKADEMII NAUK BELARUSI | 1998年 / 42卷 / 02期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Similarity measures of convex shapes are discussed. Their definitions are based on Minkowski addition and Brunn-Minkowski inequality, All measures considered are invariant under translations; moreover, they may also be invariant under rotations, multiplying by a scaler, reflections, and linear transformations. In case of convex polygons, efficient algorithms for similarity measure calculation are proposed.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 50 条
  • [21] APPROXIMATION OF CONVEX POLYGONS
    ALT, H
    BLOMER, J
    GODAU, M
    WAGENER, H
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 703 - 716
  • [22] FAST CONVEX POLYGONS
    ABRASH, M
    DR DOBBS JOURNAL, 1991, 16 (03): : 129 - &
  • [23] SHAPE MEASURES FOR RANDOM TRIANGLES WITH VERTICES IID-UNIFORM IN CONVEX POLYGONS
    LE, HL
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (02) : 204 - 204
  • [24] Convex polygons as carriers
    Shephard, G. C.
    MATHEMATICAL GAZETTE, 2016, 100 (547): : 93 - 102
  • [25] On the equipartition of plane convex bodies and convex polygons
    Guardia, Roser
    Hurtado, Ferran
    JOURNAL OF GEOMETRY, 2005, 83 (1-2) : 32 - 45
  • [26] EMPTY CONVEX POLYGONS IN ALMOST CONVEX SETS
    Valtr, Pavel
    Lippner, Gabor
    Karolyi, Gyula
    PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (02) : 121 - 127
  • [27] Similarity and symmetry measures for convex shapes using Minkowski addition
    Heijmans, HJAM
    Tuzikov, AV
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (09) : 980 - 993
  • [28] Empty convex polygons in almost convex sets
    Pavel Valtr
    Gábor Lippner
    Gyula Károlyi
    Periodica Mathematica Hungarica, 2007, 55 : 121 - 127
  • [29] THE CONVEX-HULL OF A SET OF CONVEX POLYGONS
    CHEN, H
    ROKNE, J
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 42 (3-4) : 163 - 172
  • [30] ON THE MULTIMODALITY OF DISTANCES IN CONVEX POLYGONS
    AVIS, D
    TOUSSAINT, GT
    BHATTACHARYA, BK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1982, 8 (02) : 153 - 156