Analysis of Low-Frequency Noise in Quantum Dot/Metal-Oxide Phototransistors With Metal Chalcogenide Interfaces

被引:5
|
作者
Kim, Jaehyun [1 ,2 ]
Kim, Myung-Gil [3 ]
Facchetti, Antonio [1 ,2 ]
Park, Sung Kyu [4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA
[3] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[4] Chung Ang Univ, Sch Elect & Elect Engn, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Low-frequency noise; quantum dots; metal chalcogenide ligands; metal-oxide semiconductors; phototransistors; 1/F NOISE; NANOMATERIALS; DEVICES;
D O I
10.1109/LED.2022.3189605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-frequency noise measurements are carried out to investigate optoelectronic characteristics of CdSe quantum dot (QD)/indium-gallium-zinc-oxide (IGZO) heterostructured hybrid phototransistor with respect to various QD surface ligands, such as chalcometallate ligands (Sn2S64- and Sn2Se64-) and thiocyanate (SCN-). It is found that Sn2S64- and Sn2Se64--capped QD/IGZO phototransistors show enhanced optoelectronic characteristics such as responsivity (R) of 3.06 x 10(3) A W-1 and 8.8 x 10(2) A W-1, respectively, and photodetectivity (D*) of 2.1 x 10(13) Jones and 6.18 x 10(11) Jones, respectively, compared with SCN--capped CdSe QD/IGZO phototransistors ( R of 1.21 x 10(3) A W-1 and D* of 2.02 x 10(11) Jones). Independently, all these devices exhibit 1/f low-frequency noise dependence in the subthreshold, ohmic, and saturation regimes. In particular, in the ohmic and saturation regime, the low-frequency noise properties follow the bulk mobility fluctuation mechanism for the chalcometallate ligands-based devices, while carrier number fluctuation model is dominant for the SCN--based devices. Thus, low-frequency noise analysis may provide meaningful information to evaluate important parameters for nanomaterial-based optoelectronics.
引用
收藏
页码:1499 / 1502
页数:4
相关论文
共 50 条
  • [11] Metal-oxide interfaces at the nanoscale
    Zhou, Guangwen
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (23)
  • [12] HYDROGEN AND OXYGEN AT METAL-OXIDE INTERFACES
    HUANG, XY
    MADER, W
    KIRCHHEIM, R
    [J]. ACTA METALLURGICA ET MATERIALIA, 1991, 39 (05): : 893 - 907
  • [13] METAL-OXIDE INTERFACES Where the action is
    Stair, Peter C.
    [J]. NATURE CHEMISTRY, 2011, 3 (05) : 345 - 346
  • [14] Enhancement of ferroelectricity at metal-oxide interfaces
    Stengel M.
    Vanderbilt D.
    Spaldin N.A.
    [J]. Nature Materials, 2009, 8 (05) : 392 - 397
  • [15] STRONG INTERACTIONS AT METAL-OXIDE INTERFACES
    TAUSTER, SJ
    FUNG, SC
    GARTEN, RL
    BAKER, RTK
    HORSLEY, JA
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1979, (SEP): : 167 - 167
  • [16] Computer modelling of metal-oxide interfaces
    Purton, J
    Parker, SC
    Bullett, DW
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (27) : 5709 - 5717
  • [17] Misfit dislocations at metal-oxide interfaces
    De Hosson, JTM
    [J]. TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 1997, 50 (06) : 603 - 617
  • [18] Impact of the Metal Gate on the Oxide Stack Quality Assessed by Low-Frequency Noise
    Simoen, E.
    He, L.
    O'Sullivan, B. J.
    Veloso, A.
    Horiguchi, N.
    Collaert, N.
    Claeys, C.
    [J]. SEMICONDUCTOR PROCESS INTEGRATION 10, 2017, 80 (04): : 69 - 80
  • [19] LOW-FREQUENCY NOISE TO CHARACTERIZE RESISTIVE SWITCHING OF METAL OXIDE ON POLYMER MEMORIES
    Vandamme, L. K. J.
    Colle, M.
    De Leeuw, D. M.
    Verbakel, F.
    [J]. FLUCTUATION AND NOISE LETTERS, 2011, 10 (04): : 497 - 514
  • [20] Band alignment at metal-semiconductor and metal-oxide interfaces
    Robertson, John
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (02): : 261 - 269