TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability

被引:31
|
作者
Laboucarie, Thomas [1 ]
Detilleux, Dylane [1 ]
Rodriguez-Mias, Ricard A. [2 ]
Faux, Celine [1 ]
Romeo, Yves [1 ,5 ]
Franz-Wachtel, Mirita [3 ]
Krug, Karsten [3 ]
Macek, Boris [3 ]
Villen, Judit [2 ]
Petersen, Janni [4 ]
Helmlinger, Dominique [1 ]
机构
[1] Univ Montpellier, CNRS, CRBM, Montpellier, France
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[3] Proteome Ctr Tubingen, Tubingen, Germany
[4] Flinders Univ S Australia, Sch Med, Flinders Ctr Innovat Canc, Fac Hlth Sci, Adelaide, SA, Australia
[5] Univ Toulouse Paul Sabatier, CNRS, UMR 5099, Lab Biol Mol Eucaryote, Toulouse, France
关键词
differentiation; fission yeast; SAGA; signal transduction; TOR; transcription; PROTEIN PHOSPHATASE 2A; CELL-GROWTH CONTROL; FISSION YEAST; SCHIZOSACCHAROMYCES-POMBE; SEXUAL-DIFFERENTIATION; TRANSCRIPTION FACTOR; SACCHAROMYCES-CEREVISIAE; BINDING PROTEIN; NITROGEN STARVATION; CONFORMATIONAL FLEXIBILITY;
D O I
10.15252/embr.201744942
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8(AKT) kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.
引用
收藏
页码:2197 / 2218
页数:22
相关论文
共 50 条
  • [21] Phase I expansion trial of an oral TORC1/TORC2 inhibitor (CC-223) in advanced solid tumors.
    Varga, Andrea
    Mita, Monica M.
    Wu, Jennifer J.
    Nemunaitis, John J.
    Cloughesy, Timothy Francis
    Mischel, Paul S.
    Bendell, Johanna C.
    Shih, Kent C.
    Paz-Ares, Luis G.
    Mahipal, Amit
    Delord, Jean-Pierre
    Kelley, Robin Katie
    Soria, Jean-Charles
    Wong, Lilly
    Xu, Shuichan
    James, Angela
    Wu, Xiaoling
    Chopra, Rajesh
    Hege, Kristen
    Munster, Pamela N.
    JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (15)
  • [22] Phase I expansion trial of an oral TORC1/TORC2 inhibitor (CC-223) in nonpancreatic neuroendocrine tumors (NET).
    Mita, Monica M.
    Wolin, Edward M.
    Meyer, Tim
    Nemunaitis, John J.
    Bergsland, Emily K.
    Mahipal, Amit
    Wong, Lilly
    Wu, Xiaoling
    Carmichael, James
    Chopra, Rajesh
    Hege, Kristen
    Bendell, Johanna C.
    JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (15)
  • [23] Phase I trial of an oral TORC1/TORC2 inhibitor (CC-223) in advanced solid and hematologic cancers.
    Shih, Kent C.
    Bendell, Johanna C.
    Reinert, Anne
    Jones, Suzanne
    Kelley, Robin Katie
    Infante, Jeffrey R.
    Korn, Michael
    Hege, Kristen
    Chopra, Rajesh
    Xu, Shuichan
    Wong, Lilly
    Liu, Yong
    Mortensen, Deborah
    Munster, Pamela N.
    JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (15)
  • [24] PRECLINICAL MODEL OF DUAL-SPECIFIC, MTOR COMPLEX 1 (TORC1) AND MTOR COMPLEX 2 (TORC2) INHIBITORS FOR BLADDER CANCER TREATMENT
    Valera, Vladimir A.
    Konno, Sensuke
    Choudhury, Muhammad
    Phillips, John L.
    JOURNAL OF UROLOGY, 2016, 195 (04): : E1132 - E1132
  • [25] Phase 1 Expansion Study of an Oral TORC1/TORC2 Inhibitor (CC-223) in Non-Pancreatic Neuroendocrine Tumors (NET)
    Wolin, Edward
    Mita, Monica
    Meyer, Tim
    Bendell, Johanna
    Mahipal, Amit
    Nemunaitis, John
    Munster, Pam
    Paz-Arez, Luis
    Hull, Wayne
    James, Angela
    Trowe, Torsten
    Swaminathan, Mahesh
    Wu, Xiaoling
    de Haan, Hans
    PANCREAS, 2015, 44 (02) : 362 - 362
  • [26] Phase 1 Expansion Study of an Oral TORC1/TORC2 Inhibitor (CC-223) in Non-Pancreatic Neuroendocrine Tumors (NET)
    Wolin, Edward
    Mita, Monica
    Meyer, Tim
    Bendell, Johanna
    Mahipal, Amit
    Nemunaitis, John
    Wong, Lilly
    Wu, Xiaoling
    Carmichael, James
    Chopra, Rajesh
    Hege, Kristen
    PANCREAS, 2014, 43 (03) : 508 - 508
  • [27] TORC1 and TORC2 coactivators are required for tax activation of the human T-cell leukemia virus type 1 long terminal repeats
    Siu, Yeung-Tung
    Chin, King-Tung
    Siu, Kam-Leung
    Choy, Elizabeth Yee Wai
    Jeang, Kuan-Teh
    Jin, Dong-Yan
    JOURNAL OF VIROLOGY, 2006, 80 (14) : 7052 - 7059
  • [28] AZD8055, a combined TORC1/TORC2 inhibitor regulates Mycn protein expression and prevents neuroblastoma growth in vitro and in vivo
    Vaughan, Lynsey S.
    Barker, Karen
    Webber, Hannah
    Yann Jamin
    Robinson, Simon
    Guichard, Sylvie
    Chesler, Louis
    CANCER RESEARCH, 2011, 71
  • [29] OSI-027; a Dual TORC1/TORC2 Inhibitor, Induces Bim- and Puma-Mediated Apoptosis In Lymphoid Malignancy
    Hendrickson, Andrea E. Wahner
    Gupta, Mamta
    Yun, Seongseok
    Shing, Jennifer C.
    Schneider, Paula A.
    Peterson, Kevin L.
    Karp, Judith E.
    Barr, Sharon
    Witzig, Thomas E.
    Kaufmann, Scott H.
    BLOOD, 2010, 116 (21) : 427 - 428
  • [30] Phase 1 Expansion Study of an Oral TORC1/TORC2 Kinase Inhibitor (CC-223) in Non-Pancreatic Neuroendocrine Tumors (NET)
    Meyer, T.
    Mahipal, A.
    Bendel, J.
    Nemunaitis, J.
    Mita, M.
    Wong, L.
    Wu, X.
    Chopra, R.
    Hege, K.
    Wolin, E.
    NEUROENDOCRINOLOGY, 2014, 99 (3-4) : 276 - 276