ASSESSMENT OF POLARIMETRIC VARIABILITY BY DISTANCE GEOMETRY FOR ENHANCED CLASSIFICATION OF OIL SLICKS USING SAR

被引:0
|
作者
Marinoni, Andrea [1 ]
Espeseth, Martine M. [1 ]
Gamba, Paolo [2 ]
Brekke, Camilla [1 ]
Eltoft, Torbjorn [1 ]
机构
[1] UiT Arctic Univ Norway, Dept Phys & Technol, Ctr Integrated Remote Sensing & Forecasting Arcti, Tromso, Norway
[2] Univ Pavia, Dip Ingn Ind Informaz, Pavia, Italy
关键词
D O I
10.1109/igarss.2019.8899247
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we introduce a new approach for investigation of polarimetric Synthetic Aperture Radar (PolSAR) images for oil slick analysis. Our method aims at enhancing discrimination of oil types by exploring the polarimetric features that can be produced by processing PolSAR scenes without dimensionality reduction. Taking advantage of a mixture description of the interactions among classes within the dataset and a characterization of their intra- and inter-class variability, our algorithm is able to quantify the areal coverage of different elements. These estimates can be used to hence improve classification. Experimental results on a PolSAR dataset acquired by unmanned aerial vehicle (UAV) on oil slicks in open water show the capacity of our method.
引用
收藏
页码:5217 / 5220
页数:4
相关论文
共 50 条
  • [31] Urban land cover classification using polarimetric SAR interferometry
    Li, Xinwu
    Pottier, Eric
    Guo, Huadong
    Ferro-Famil, Laurent
    [J]. SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: DATA PROCESSING AND APPLICATIONS, 2010, 7841
  • [32] Feature selection and classification of polarimetric SAR images using SVM
    Wu, Yong-Hui
    Ji, Ke-Feng
    Li, Yu
    Yu, Wen-Xian
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2008, 30 (10): : 2347 - 2351
  • [33] Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels
    Hou, Biao
    Kou, Hongda
    Jiao, Licheng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (07) : 3072 - 3081
  • [34] Polarimetric SAR image classification using support vector machines
    Fukuda, S
    Hirosawa, H
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2001, E84C (12) : 1939 - 1945
  • [35] Using cross-entropy for polarimetric SAR image classification
    Xu, JY
    Yang, J
    Peng, YN
    Wang, C
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1917 - 1919
  • [36] Classification of polarimetric SAR images using adaptive neighbourhood structures
    Garzelli, A
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (08) : 1669 - 1675
  • [37] Classification of polarimetric SAR images using Support Vector Machines
    Hosseini, R. Shah
    Entezari, I.
    Homayouni, S.
    Motagh, M.
    Mansouri, B.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (02) : 220 - 233
  • [38] ON THE OPTIMAL COMPACT POLARIMETRIC SAR MODES AND FEATURES FOR MARINE OIL SPILL CLASSIFICATION
    Li, Yu
    Zhang, Yuanzhi
    Migliaccio, Maurizio
    Nunziata, Ferdinando
    Buono, Andrea
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2435 - 2438
  • [39] MODEL BASED OIL SPILL DETECTION USING POLARIMETRIC SAR
    Salberg, Arnt-Borre
    Rudjord, Oystein
    Solberg, Anne H. S.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5884 - 5887
  • [40] Wishart distance-based joint collaborative representation for polarimetric SAR image classification
    Geng, Jie
    Wang, Hongyu
    Fan, Jianchao
    Ma, Xiaorui
    Wang, Bing
    [J]. IET RADAR SONAR AND NAVIGATION, 2017, 11 (11): : 1620 - 1628