Orthos: A Trustworthy AI Framework for Data Acquisition

被引:2
|
作者
Moti, Moin Hussain [1 ]
Chatzopoulos, Dimitris [2 ]
Hui, Pan [2 ,3 ]
Faltings, Boi [4 ]
Gujar, Sujit [1 ]
机构
[1] Int Inst Informat Technol Hyderabad, Hyderabad, India
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[3] Univ Helsinki, Helsinki, Finland
[4] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
来源
关键词
Trustworthy AI; Spatiotemporal data acquisition; Decentralised applications; Smart contracts; FEEDBACK;
D O I
10.1007/978-3-030-66534-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Information acquisition through crowdsensing with mobile agents is a popular way to collect data, especially in the context of smart cities where the deployment of dedicated data collectors is expensive and ineffective. It requires efficient information elicitation mechanisms to guarantee that the collected data are accurately acquired and reported. Such mechanisms can be implemented via smart contracts on blockchain to enable privacy and trust. In this work we develop Orthos, a blockchain-based trustworthy framework for spontaneous location-based crowdsensing queries without assuming any prior knowledge about them. We employ game-theoretic mechanisms to incentivize agents to report truthfully and ensure that the information is collected at the desired location while ensuring the privacy of the agents. We identify six necessary characteristics for information elicitation mechanisms to be applicable in spontaneous location-based settings and implement an existing state-of-the-art mechanism using smart contracts. Additionally, as location information is exogenous to these mechanisms, we design the Proof-of-Location protocol to ensure that agents gather the data at the desired locations. We examine the performance of Orthos on Rinkeby Ethereum testnet and conduct experiments with live audience.
引用
收藏
页码:100 / 118
页数:19
相关论文
共 50 条
  • [31] Editorial: Trustworthy AI for healthcare
    Agafonov, Oleg
    Babic, Aleksandar
    Sousa, Sonia
    Alagaratnam, Sharmini
    FRONTIERS IN DIGITAL HEALTH, 2024, 6
  • [32] MLOps as Enabler of Trustworthy AI
    Billeter, Yann
    Denzel, Philipp
    Chavarriaga, Ricardo
    Forster, Oliver
    Schilling, Frank-Peter
    Brunner, Stefan
    Frischknecht-Gruber, Carmen
    Reif, Monika
    Weng, Joanna
    2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024, 2024, : 37 - 40
  • [33] Data Acquisition Framework at SACLA
    Okada, K.
    Abe, T.
    Amselem, A.
    Furukawa, Y.
    Joti, Y.
    Kameshima, T.
    Sugimoto, T.
    Tanaka, R.
    Yamaga, M.
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [34] Trustworthy AI for safe medicines
    Jens-Ulrich Stegmann
    Rory Littlebury
    Markus Trengove
    Lea Goetz
    Andrew Bate
    Kim M. Branson
    Nature Reviews Drug Discovery, 2023, 22 : 855 - 856
  • [35] Lorenz Zonoids for Trustworthy AI
    Giudici, Paolo
    Raffinetti, Emanuela
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT I, 2023, 1901 : 517 - 530
  • [36] Simion and Kelp on trustworthy AI
    Carter J.A.
    Asian Journal of Philosophy, 2 (1):
  • [37] Checklist for Validating Trustworthy AI
    Han, Seung-Ho
    Choi, Ho-Jin
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 391 - 394
  • [38] Trustworthy journalism through AI
    Opdahl, Andreas L.
    Tessem, Bjornar
    Dang-Nguyen, Duc-Tien
    Motta, Enrico
    Setty, Vinay
    Throndsen, Eivind
    Tverberg, Are
    Trattner, Christoph
    DATA & KNOWLEDGE ENGINEERING, 2023, 146
  • [39] Trustworthy AI for safe medicines
    Stegmann, Jens-Ulrich
    Littlebury, Rory
    Trengove, Markus
    Goetz, Lea
    Bate, Andrew
    Branson, Kim M.
    NATURE REVIEWS DRUG DISCOVERY, 2023, 22 (10) : 855 - 856
  • [40] Trustworthy AI in Medicine and Healthcare
    Doroshenko, Anastasiya
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302