On Quadratic Stochastic Operators Having Three Fixed Points

被引:9
|
作者
Saburov, Mansoor [1 ]
Yusof, Nur Atikah [1 ]
机构
[1] Int Islamic Univ Malaysia, Dept Computat & Theoret Sci, Fac Sci, Kuantan 25200, Pahang, Malaysia
关键词
LOTKA-VOLTERRA OPERATORS; CONSENSUS;
D O I
10.1088/1742-6596/697/1/012012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We knew that a trajectory of a linear stochastic operator associated with a positive square stochastic matrix starting from any initial point from the simplex converges to a unique fixed point. However, in general, the similar result for a quadratic stochastic operator associated with a positive cubic stochastic matrix does not hold true. In this paper, we provide an example for the quadratic stochastic operator with positive coefficients in which its trajectory may converge to different fixed points depending on initial points.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] FIXED POINTS, COUPLED FIXED POINTS AND BEST PROXIMITY POINTS FOR CYCLIC OPERATORS
    Petrusel, Adrian
    Petrusel, Gabriela
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (08) : 1637 - 1646
  • [22] Fixed points and quadratic ρ-functional equations
    Park, Choonkil
    Kim, Sang Og
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1858 - 1871
  • [23] STOCHASTIC OPERATORS AND EXTREME POINTS
    Hadwin, Don
    Nordgren, Eric
    Radjavi, Heydar
    OPERATORS AND MATRICES, 2009, 3 (02): : 227 - 233
  • [24] Stochastic fixed points for the maximum
    Jagers, P
    Rösler, U
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 325 - 338
  • [25] C*-Algebras of Singular Integral Operators with Shifts Having the Same Nonempty Set of Fixed Points
    Amelia Bastos, M.
    Fernandes, Claudio A.
    Karlovich, Yuri I.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (02) : 241 - 272
  • [26] C*-Algebras of Singular Integral Operators with Shifts Having the Same Nonempty Set of Fixed Points
    M. Amélia Bastos
    Claudio A. Fernandes
    Yuri I. Karlovich
    Complex Analysis and Operator Theory, 2008, 2 : 241 - 272
  • [27] Quadratic stochastic operators on Banach lattices
    Badocha, Michal
    Bartoszek, Wojciech
    POSITIVITY, 2018, 22 (02) : 477 - 492
  • [28] On Homotopy of Volterrian Quadratic Stochastic Operators
    Mukhamedov, Farrukh
    Saburov, Mansoor
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2010, 4 (01): : 47 - 62
  • [29] F-quadratic stochastic operators
    U. A. Rozikov
    U. U. Zhamilov
    Mathematical Notes, 2008, 83 : 554 - 559
  • [30] On mixing in the class of quadratic stochastic operators
    Bartoszek, Wojciech
    Pulka, Malgorzata
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 : 95 - 113