ADAPTIVE QUADRILATERAL AND HEXAHEDRAL FINITE ELEMENT METHODS WITH HANGING NODES AND CONVERGENCE ANALYSIS
被引:8
|
作者:
Zhao, Xuying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Zhao, Xuying
[1
,2
]
Mao, Shipeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Mao, Shipeng
[1
]
Shi, Zliong-Ci
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Shi, Zliong-Ci
[1
]
机构:
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
In this paper we study the convergence of adaptive finite element methods for the general non-affine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and Boiler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Q(m) elements which covers both the two- and three-dimensional cases in a unified fashion.
机构:
National University of Mongolia, 1, Ikh Surguuli St, Ulaanbaatar
McGill University, 845 Sherbrooke, MontrealNational University of Mongolia, 1, Ikh Surguuli St, Ulaanbaatar
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Xu, Liwei
Xu, Xuejun
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
Chinese Acad Sci, AMSS, Inst Computat Math, Beijing 100190, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Xu, Xuejun
Zhang, Shangyou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Math Sci, Newark, DE 19716 USAUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
机构:
Institut für Mathematik,Humboldt Universitt zu Berlin,Rudower Chaussee 25,D-12489 Berlin,GermanyInstitut für Mathematik,Humboldt Universitt zu Berlin,Rudower Chaussee 25,D-12489 Berlin,Germany