Learning and Using Context on a Humanoid Robot Using Latent Dirichlet Allocation

被引:0
|
作者
Celikkanat, Hande [1 ]
Orhan, Guner [1 ]
Pugeault, Nicolas [2 ]
Guerin, Frank [3 ]
Sahin, Erol [1 ]
Kalkan, Sinan [1 ]
机构
[1] Middle East Tech Univ, Comp Engn, KOVAN Res Lab, Ankara, Turkey
[2] Univ Surrey, CVSSP, Guildford, Surrey, England
[3] Univ Aberdeen, Comp Sci, Aberdeen, Scotland
关键词
SCENE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we model context in terms of a set of concepts grounded in a robot's sensorimotor interactions with the environment. For this end, we treat context as a latent variable in Latent Dirichlet Allocation, which is widely used in computational linguistics for modeling topics in texts. The flexibility of our approach allows many-to-many relationships between objects and contexts, as well as between scenes and contexts. We use a concept web representation of the perceptions of the robot as a basis for context analysis. The detected contexts of the scene can be used for several cognitive problems. Our results demonstrate that the robot can use learned contexts to improve object recognition and planning.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 50 条
  • [21] Feature extraction for document text using Latent Dirichlet Allocation
    Prihatini, P. M.
    Suryawan, I. K.
    Mandia, I. N.
    [J]. 2ND INTERNATIONAL JOINT CONFERENCE ON SCIENCE AND TECHNOLOGY (IJCST) 2017, 2018, 953
  • [22] Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation
    Lienou, Marie
    Maitre, Henri
    Datcu, Mihai
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 28 - 32
  • [23] Identifying Top Listers in Alphabay Using Latent Dirichlet Allocation
    Grisham, John
    Barreras, Calvin
    Afarin, Cyran
    Patton, Mark
    Chen, Hsinchun
    [J]. IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS: CYBERSECURITY AND BIG DATA, 2016, : 219 - 219
  • [24] Latent Dirichlet Allocation for Classification using Gene Expression Data
    Yalamanchili, Hima Bindu
    Kho, Soon Jye
    Raymer, Michael L.
    [J]. 2017 IEEE 17TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2017, : 39 - 44
  • [25] Obtaining Single Document Summaries Using Latent Dirichlet Allocation
    Nagesh, Karthik
    Murty, M. Narasimha
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT IV, 2012, 7666 : 66 - 74
  • [26] Topic Modeling Twitter Data Using Latent Dirichlet Allocation and Latent Semantic Analysis
    Qomariyah, Siti
    Iriawan, Nur
    Fithriasari, Kartika
    [J]. 2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION, 2019, 2019, 2194
  • [27] Context-Aware Latent Dirichlet Allocation for Topic Segmentation
    Li, Wenbo
    Matsukawa, Tetsu
    Saigo, Hiroto
    Suzuki, Einoshin
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 475 - 486
  • [28] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [29] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 601 - 608
  • [30] Learning Probabilistic Kernel from Latent Dirichlet Allocation
    Lv, Qi
    Pang, Lin
    Li, Xiong
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (06): : 2527 - 2545