Target detection with randomized thresholds for lidar applications

被引:19
|
作者
Johnson, Steven E. [1 ]
机构
[1] OGSyst, Chantilly, VA 20151 USA
关键词
AVALANCHE PHOTODIODES; DETECTION STATISTICS; LASER RADARS; MODE; LADAR; PROBABILITIES; PERFORMANCE; SINGLE;
D O I
10.1364/AO.51.004139
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light detection and ranging (lidar) systems use binary hypothesis tests to detect the presence of a target in a range interval. For systems that count photon detections, hypothesis test thresholds are normally set so that a target detection is declared if the number of detections exceeds a particular number. When this method is employed, the false alarm probability can not be selected arbitrarily. In this paper, a hypothesis test that uses randomized thresholds is described. This randomized method of thresholding allows lidar operation at any false alarm probability. When there is a maximum allowable false alarm probability, the hypothesis test that uses randomized thresholds generally produces higher target detection probabilities than the conventional (nonrandom) hypothesis test. (C) 2012 Optical Society of America
引用
收藏
页码:4139 / 4150
页数:12
相关论文
共 50 条
  • [41] Overview of LiDAR point cloud target detection methods based on deep learning
    Huang, Siyuan
    Liu, Limin
    Fu, Xiongjun
    Dong, Jian
    Huang, Fuyu
    Lang, Ping
    SENSOR REVIEW, 2022, 42 (05) : 485 - 502
  • [42] 3D Lidar Target Detection Method at the Edge for the Cloud Continuum
    Xuemei Li
    Xuelian Liu
    Da Xie
    Chong Chen
    Journal of Grid Computing, 2024, 22
  • [43] Leveraging Lidar Data to Aid in Hyperspectral Image Target Detection in the Radiance Domain
    Ientilucci, Emmett J.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [44] 3D Lidar Target Detection Method at the Edge for the Cloud Continuum
    Li, Xuemei
    Liu, Xuelian
    Xie, Da
    Chen, Chong
    JOURNAL OF GRID COMPUTING, 2024, 22 (01)
  • [45] A Railway Lidar Point Cloud Reconstruction Based on Target Detection and Trajectory Filtering
    Liu, Hao
    Yao, Lianbi
    Xu, Zhengwen
    Fan, Xianzheng
    Jiao, Xiongfeng
    Sun, Panpan
    REMOTE SENSING, 2022, 14 (19)
  • [46] Artificial target detection with a hyperspectral LiDAR over 26-h measurement
    Puttonen, Eetu
    Hakala, Teemu
    Nevalainen, Olli
    Kaasalainen, Sanna
    Krooks, Anssi
    Karjalainen, Mika
    Anttila, Kati
    OPTICAL ENGINEERING, 2015, 54 (01)
  • [47] An in-depth analysis of hyperspectral target detection with shadow compensation via LiDAR
    Oduncu, Emrah
    Yuksel, Seniha Esen
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [48] Target Detection on Water Surfaces Using Fusion of Camera and LiDAR Based Information
    Li, Yongguo
    Wang, Yuanrong
    Xie, Jia
    Xu, Caiyin
    Zhang, Kun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 467 - 486
  • [49] Predicting Small Target Detection Performance of Low-SNR Airborne Lidar
    Cossio, Tristan K.
    Slatton, K. Clint
    Carter, William E.
    Shrestha, Kris Y.
    Harding, David
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2010, 3 (04) : 672 - 688
  • [50] Experimentally based simulations on modulated lidar for shallow underwater target detection and localization
    Jezequel, Vincent
    Audo, Frederic
    Pellen, Fabrice
    Le Jeune, Bernard
    REMOTE SENSING OF THE OCEAN, SEA ICE, AND LARGE WATER REGIONS 2010, 2010, 7825