Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman Province, Iran, using principal component analysis

被引:21
|
作者
Ranjbar, H [1 ]
Hassanzadeh, H [1 ]
Torabi, M [1 ]
Ilaghi, O [1 ]
机构
[1] Shaheed Bahonar Univ Kerman, Dept Min Engn, Kerman, Iran
关键词
mineral exploration; statistical analysis; airborne geophysics; geochemistry; Iran;
D O I
10.1016/S0926-9851(01)00059-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper describes a methodology for the integrated interpretation of airborne magnetic and airborne gamma -ray spectrometer data. The Darrehzar porphyry copper deposit is situated in the Urumieh-Dokhtar magmatic assemblage of Central Iran. Phyllic and propylitic alterations are pervasive in the area but potassic and argillic alterations are not readily recognized on the surface. The spatial distributions of geophysical data resemble the lithological and alteration patterns in the area. The Darrehzar porphyry copper deposit is considered as a control site for determination of the degrees that the geophysical data is correlated with the mineralization zone. Airborne magnetic/radiometric, and geochemical/alteration data sets have been integrated and analyzed using principal component analysis. This technique is found to be useful for the delineation of hydrothermally altered areas and data compression. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [41] Using principal component analysis in process performance for multivariate data
    Wang, FK
    Du, TCT
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2000, 28 (02): : 185 - 194
  • [42] Interpolation of signals with missing data using Principal Component Analysis
    Oliveira, P.
    Gomes, L.
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2010, 21 (01) : 25 - 43
  • [43] REPRESENTATION OF DYNAMIC ELECTROMYOGRAPHIC DATA USING PRINCIPAL COMPONENT ANALYSIS
    COCHRAN, GVB
    WOOTTEN, ME
    KADABA, MP
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1984, 435 (DEC) : 392 - 395
  • [44] Interpolation of signals with missing data using Principal Component Analysis
    P. Oliveira
    L. Gomes
    [J]. Multidimensional Systems and Signal Processing, 2010, 21 : 25 - 43
  • [45] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    [J]. APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [46] Principal component analysis for alteration mapping: A case study, Jinghong area, Yunnan Province, China
    Al Bassam, Bassam F.
    Hu, Guangdao
    Jin, Menggui
    [J]. PROCEEDINGS OF THE IAMG '07: GEOMATHEMATICS AND GIS ANALYSIS OF RESOURCES, ENVIRONMENT AND HAZARDS, 2007, : 557 - +
  • [47] A denoising method based on kernel principal component analysis for airborne time domain electromagnetic data
    Chen Bin
    Lu Cong-De
    Liu Guang-Ding
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2014, 57 (01): : 295 - 302
  • [48] Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis
    Choi, Y
    Elliott, S
    Simpson, IJ
    Blake, DR
    Colman, JJ
    Dubey, MK
    Meinardi, S
    Rowland, FS
    Shirai, T
    Smith, FA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D5)
  • [49] Principal component analysis of interval data: a symbolic data analysis approach
    Carlo N. Lauro
    Francesco Palumbo
    [J]. Computational Statistics, 2000, 15 : 73 - 87
  • [50] Principal component analysis of interval data: a symbolic data analysis approach
    Lauro, CN
    Palumbo, F
    [J]. COMPUTATIONAL STATISTICS, 2000, 15 (01) : 73 - 87