ON THE EXISTENCE OF A SOLUTION OF A CLASS OF NON-STATIONARY FREE BOUNDARY PROBLEMS

被引:0
|
作者
Bousselsal, Mahmoud [1 ]
Lyaghfouri, Abdeslem [2 ]
Zaouche, Elmehdi [3 ]
机构
[1] Ecole Normale Super, Labo Part Diff Eq & Hist Maths, Dept Math, Vieux Kouba 16050, Algeria
[2] Amer Univ Ras Al Khaimah, Dept Math & Nat Sci, Ras Al Khaymah, U Arab Emirates
[3] Univ El Oued, Labo Oper Theo & Part Diff Eq Fdn & Applicat, Dept Math, BP 789, El Oued 39000, Algeria
关键词
Parabolic free boundary problems; evolution dam problem; existence; regularity; DAM PROBLEM; FILTRATION PROBLEM; UNIQUENESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of parabolic free boundary problems with heterogeneous coefficients including, from a physical point of view, the evolutionary dam problem. We establish existence of a solution for this problem. We use a regularized problem for which we prove existence of a solution by applying the Tychonoff fixed point theorem. Then we pass to the limit to get a solution of our problem. We also give a regularity result of the solutions.
引用
收藏
页码:449 / 475
页数:27
相关论文
共 50 条
  • [31] Non-stationary dynamics of weakly twisted domain boundary
    Khodenkov, GY
    [J]. FIZIKA METALLOV I METALLOVEDENIE, 1996, 81 (01): : 44 - 51
  • [32] NON-STATIONARY BOUNDARY LAYER NEAR A TURNING DISK
    POP, I
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (11): : 397 - &
  • [33] GENERALIZED BOUNDARY-CONDITIONS IN AN EXISTENCE AND UNIQUENESS PROOF FOR THE SOLUTION OF THE NON-STATIONARY ELECTRON BOLTZMANN-EQUATION BY MEANS OF OPERATOR-SEMIGROUPS
    BARTOLOMAUS, G
    WILHELM, J
    [J]. BEITRAGE AUS DER PLASMAPHYSIK-CONTRIBUTIONS TO PLASMA PHYSICS, 1983, 23 (06): : 603 - 613
  • [34] Existence of periodic solution to one dimensional free boundary problems for adsorption phenomena
    Aiki, T.
    Sato, N.
    [J]. BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 25 : 3 - 18
  • [35] ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO CERTAIN NON-STATIONARY BOUNDARY VALUE PROBLEMS WHEN T -] INFINITY
    MIKHAILO.VP
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 162 (03): : 506 - &
  • [36] On the existence of solutions for non-stationary third-grade fluids
    Bresch, D
    Lemoine, J
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (03) : 485 - 498
  • [37] A class of non-stationary covariance functions with compact support
    Liang, Min
    Marcotte, Denis
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (03) : 973 - 987
  • [38] On existence of non-stationary realization of a linear multivariable control system
    Rusanov, V. A.
    Daneev, A. V.
    Kumenko, A. E.
    Sharpinskiy, D. Yu.
    [J]. ICSENG 2008: INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING, 2008, : 27 - 31
  • [39] Solution of non-stationary electrodynamics boundary value problem by FDTD and Volterra integral equation methods
    Fedotov, FV
    Nerukh, AG
    Benson, T
    Sewell, P
    [J]. ICTON 2002: PROCEEDINGS OF THE 2002 4TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS AND EUROPEAN SYMPOSIUM ON PHOTONIC CRYSTALS, VOL 1, 2002, : 180 - 183
  • [40] Non-stationary and discontinuous quasiconformal mapping class groups
    Fujikawa, Ege
    Matsuzaki, Katsuhiko
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (01) : 173 - 185