The Boolean average dynamics in one-dimensional lattice models with antiferromagnetic interaction

被引:1
|
作者
Bakalinskii, LK [1 ]
机构
[1] Chelyabinsk State Pedag Univ, Chelyabinsk, Russia
关键词
Hubbard Model; Rotation Number; Weight Sequence; Antiferromagnetic Interaction; Polygonal Line;
D O I
10.1007/BF02557184
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Hubbard model of a one-dimensional lattice gas with antiferromagnetic interaction. The energy of the model is minimized using the Boolean average. For an arbitrary initial distribution of gas particles on the line, we show that the dependence of the gas concentration on the chemical potential is described by the Canter stairs.
引用
收藏
页码:1453 / 1458
页数:6
相关论文
共 50 条
  • [21] ONE-DIMENSIONAL LATTICE GAS MODELS - DIVERGENCE OF THE VISCOSITY
    DHUMIERES, D
    LALLEMAND, P
    QIAN, YH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1989, 308 (07): : 585 - 590
  • [22] Fidelity susceptibility in one-dimensional disordered lattice models
    Wei, Bo-Bo
    [J]. PHYSICAL REVIEW A, 2019, 99 (04)
  • [23] CONTINUOUS ONE-DIMENSIONAL AVERAGE UNSATURATED COVERAGE AS THE LIMIT OF A LATTICE MODEL
    MALTZ, A
    MOLA, EE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (10): : 5141 - 5144
  • [24] Dynamics of one-dimensional spiking neuron models
    Romain Brette
    [J]. Journal of Mathematical Biology, 2004, 48 : 38 - 56
  • [25] CRITICAL-DYNAMICS FOR ONE-DIMENSIONAL MODELS
    LEYVRAZ, F
    JAN, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (04): : 603 - 605
  • [26] ON THE CRITICAL-DYNAMICS OF ONE-DIMENSIONAL MODELS
    DROZ, M
    DASILVA, JKL
    MALASPINAS, A
    [J]. HELVETICA PHYSICA ACTA, 1986, 59 (6-7): : 1251 - 1251
  • [27] Dynamics of one-dimensional spiking neuron models
    Brette, R
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 48 (01) : 38 - 56
  • [28] SOLITONS IN ONE-DIMENSIONAL ANTIFERROMAGNETIC CHAINS
    PIRES, AST
    TALIM, SL
    COSTA, BV
    [J]. PHYSICAL REVIEW B, 1989, 39 (10): : 7149 - 7156
  • [29] INCOMMENSURATE STRUCTURE WITH NO AVERAGE LATTICE - AN EXAMPLE OF A ONE-DIMENSIONAL QUASI-CRYSTAL
    AUBRY, S
    GODRECHE, C
    VALLET, F
    [J]. JOURNAL DE PHYSIQUE, 1987, 48 (03): : 327 - 334
  • [30] Self-trapping dynamics of excitons on a one-dimensional lattice
    Ishida, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 102 (04): : 483 - 491