Grain boundaries in WC-Co hardmetals with facetted and rounded WC grains

被引:5
|
作者
Zaitsev, A. A. [1 ]
Sidorenko, D. [1 ]
Konyashin, I [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
基金
俄罗斯基础研究基金会;
关键词
Grain boundaries; Diffusion; Hardmetals; Carbon content; Ceramics; Grain growth; REINFORCED BINDER; TUNGSTEN CARBIDE;
D O I
10.1016/j.matlet.2021.130941
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
WC/WC grain boundaries in ultra-coarse WC-Co hardmetals with different shapes of WC grains were examined by STEM/EDX. Most WC/WC grain boundaries in the hardmetal with a medium-high carbon content containing facetted WC grains do not comprise nm-thick Co interlayers, although there are grain boundaries containing Co interlayers in its microstructure. The majority of WC/WC grain boundaries is the hardmetal with a medium-low carbon content containing rounded WC grains comprise nm-thick Co interlayers. The difference in the state of the WC-WC grain boundaries is presumably related to various wetting rates of tungsten carbide by liquid Co-based binders with various carbon contents.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Compressive creep of coarse-grain WC-Co and WC-TaC-Co hardmetals with uniform microstructure comprising rounded WC grains
    Zaitsev, A. A.
    Korotitskiy, A., V
    Levashov, E. A.
    Avdeenko, E. N.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [2] Hardmetals with "rounded" WC grains
    Herber, Ralf-Peter
    Schubert, Wolf-Dieter
    Lux, Benno
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2006, 24 (05): : 360 - 364
  • [3] Nanoindentation of WC-Co hardmetals
    Duszova, Annamaria
    Halgas, Radoslav
    Bl'anda, Marek
    Hvizdos, Pavol
    Lofaj, Frantisek
    Dusza, Jan
    Morgiel, Jerzy
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (12) : 2227 - 2232
  • [4] Grinding of WC-Co hardmetals
    Hegeman, JBJW
    De Hosson, JTM
    de With, G
    [J]. WEAR, 2001, 248 (1-2) : 187 - 196
  • [5] Deformation and fracture of WC grains and grain boundaries in a WC-Co hardmetal during microcantilever bending tests
    Csanadi, Tamas
    Vojtko, Marek
    Dusza, Jan
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 87 (87):
  • [6] NbC as grain growth inhibitor and carbide in WC-Co hardmetals
    Huang, S. G.
    Liu, R. L.
    Li, L.
    Van der Biest, O.
    Vleugels, J.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008, 26 (05): : 389 - 395
  • [7] FRACTURE TOPOGRAPHY OF WC-CO HARDMETALS
    LEA, C
    ROEBUCK, B
    [J]. METAL SCIENCE, 1981, 15 (06): : 262 - 266
  • [8] Ultrasonic evaluation of WC-Co hardmetals
    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
    [J]. Wuhan Ligong Daxue Xuebao, 2007, 10 (153-157):
  • [9] Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions
    Kellner, F. J. J.
    Hildebrand, H.
    Virtanen, S.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2009, 27 (04): : 806 - 812
  • [10] Morphology of WC grains in WC-Co alloys
    Lay, S.
    Allibert, C. H.
    Christensen, M.
    Wahnstrom, G.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 486 (1-2): : 253 - 261