Nanoindentation of WC-Co hardmetals

被引:64
|
作者
Duszova, Annamaria [1 ]
Halgas, Radoslav [1 ,2 ]
Bl'anda, Marek [1 ,2 ]
Hvizdos, Pavol [1 ]
Lofaj, Frantisek [1 ]
Dusza, Jan [1 ,3 ]
Morgiel, Jerzy [4 ]
机构
[1] Slovak Acad Sci, Inst Mat Res, Kosice 04353, Slovakia
[2] Fac Mat Sci & Technol STU, Trnava 91724, Slovakia
[3] Obuda Univ, Donat Banki Fac Mech & Safety Engn, H-1428 Budapest, Hungary
[4] Polish Acad Sci, Inst Met & Mat Sci, PL-30059 Krakow, Poland
关键词
WC crystals; Nanoindentation; Hardness; Load-size effect; Orientation effect; HARDNESS; CRYSTALS; MODULUS; WC/CO; SLIP;
D O I
10.1016/j.jeurceramsoc.2012.12.018
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
WC-Co cemented carbide has been investigated using instrumented indentation with maximum applied loads from 0.1 to 10 mN. The hardness and indentation modulus of individual phases and the influence of crystallographic orientation of WC on the hardness and indentation modulus have been studied. The hardness of the Co binder was approximately 10 GPa and that of WC grains up to 50 GPa with relatively large scatter under the indentation load of 1 mN. Investigation of the role of crystallographic orientation of WC grains on hardness at 10 mN load revealed average values of H-ITbasal = 40.4 GPa (E-ITbasal = 674 GPa) and H-ITprismatic = 32.8 GPa (E-Itprismatic = 542 GPa), respectively. The scatter in the measured values at low indentation loads is caused by the effects of surface and sub-surface characteristics (residual stress, damaged region) and at higher loads by "mix-phase" volume below the indenter. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2227 / 2232
页数:6
相关论文
共 50 条
  • [1] Grinding of WC-Co hardmetals
    Hegeman, JBJW
    De Hosson, JTM
    de With, G
    [J]. WEAR, 2001, 248 (1-2) : 187 - 196
  • [2] FRACTURE TOPOGRAPHY OF WC-CO HARDMETALS
    LEA, C
    ROEBUCK, B
    [J]. METAL SCIENCE, 1981, 15 (06): : 262 - 266
  • [3] Reactive Sintering of Bimodal WC-Co Hardmetals
    Tarraste, Marek
    Juhani, Kristjan
    Pirso, Jueri
    Viljus, Mart
    [J]. MATERIALS SCIENCE-MEDZIAGOTYRA, 2015, 21 (03): : 382 - 385
  • [4] Gradient WC-Co hardmetals: Theory and practice
    Konyashin, I.
    Ries, B.
    Lachmann, F.
    Fry, A. T.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 36 : 10 - 21
  • [5] NOTCHED BEND TESTS ON WC-CO HARDMETALS
    ROEBUCK, B
    [J]. JOURNAL OF MATERIALS SCIENCE, 1988, 23 (01) : 281 - 287
  • [6] Additive manufacturing of WC-Co hardmetals: a review
    Yang, Yankun
    Zhang, Chaoqun
    Wang, Dayong
    Nie, Liping
    Wellmann, Daniel
    Tian, Yingtao
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (5-6): : 1653 - 1673
  • [7] Additive manufacturing of WC-Co hardmetals: a review
    Yankun Yang
    Chaoqun Zhang
    Dayong Wang
    Liping Nie
    Daniel Wellmann
    Yingtao Tian
    [J]. The International Journal of Advanced Manufacturing Technology, 2020, 108 : 1653 - 1673
  • [8] Interlaboratory Measurements of Contiguity in WC-Co Hardmetals
    Mingard, Ken P.
    Roebuck, Bryan
    [J]. METALS, 2019, 9 (03):
  • [9] Simulation of Co binder failure in WC-Co hardmetals
    Quinn, DF
    Connolly, PJ
    ORegan, TL
    Howe, MA
    McHugh, P
    [J]. IUTAM SYMPOSIUM ON MICROMECHANICS OF PLASTICITY AND DAMAGE OF MULTIPHASE MATERIALS, 1996, 46 : 231 - 238
  • [10] Development of manufacturing technology on WC-Co hardmetals
    Nie, Hongbo
    Zhang, Taiquan
    [J]. TUNGSTEN, 2019, 1 (03) : 198 - 212