Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI

被引:89
|
作者
Zhou, Jiali [1 ,2 ,3 ]
Lu, Jinghui [4 ,5 ]
Gao, Chen [1 ,2 ]
Zeng, Jingjing [6 ]
Zhou, Changyu [1 ,2 ]
Lai, Xiaobo [1 ,2 ]
Cai, Wenli [4 ,5 ]
Xu, Maosheng [1 ,2 ]
机构
[1] Zhejiang Chinese Med Univ, Dept Radiol, Affiliated Hosp 1, 54 Youdian Rd, Hangzhou 310006, Peoples R China
[2] Chinese Med Univ, Clin Med Coll Zhejiang 1, Hangzhou, Peoples R China
[3] Ningbo First Hosp, Ningbo, Peoples R China
[4] Massachusetts Gen Hosp, Dept Radiol, 25 New Chardon St,400C, Boston, MA 02114 USA
[5] Harvard Med Sch, 25 New Chardon St,400C, Boston, MA 02114 USA
[6] Zhejiang Chinese Med Univ, Affiliated Hosp 3, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiomics; Breast cancer; Neoadjuvant chemotherapy; Pathological complete response; TEXTURE ANALYSIS; PATHOLOGICAL RESPONSE; DCE-MRI; SURVIVAL; PATTERNS; FEATURES;
D O I
10.1186/s12885-020-6523-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The purpose of this study was to investigate the value of wavelet-transformed radiomic MRI in predicting the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) for patients with locally advanced breast cancer (LABC). Methods Fifty-five female patients with LABC who underwent contrast-enhanced MRI (CE-MRI) examination prior to NAC were collected for the retrospective study. According to the pathological assessment after NAC, patient responses to NAC were categorized into pCR and non-pCR. Three groups of radiomic textures were calculated in the segmented lesions, including (1) volumetric textures, (2) peripheral textures, and (3) wavelet-transformed textures. Six models for the prediction of pCR were Model I: group (1), Model II: group (1) + (2), Model III: group (3), Model IV: group (1) + (3), Model V: group (2) + (3), and Model VI: group (1) + (2) + (3). The performance of predicting models was compared using the area under the receiver operating characteristic (ROC) curves (AUC). Results The AUCs of the six models for the prediction of pCR were 0.816 +/- 0.033 (Model I), 0.823 +/- 0.020 (Model II), 0.888 +/- 0.025 (Model III), 0.876 +/- 0.015 (Model IV), 0.885 +/- 0.030 (Model V), and 0.874 +/- 0.019 (Model VI). The performance of four models with wavelet-transformed textures (Models III, IV, V, and VI) was significantly better than those without wavelet-transformed textures (Model I and II). In addition, the inclusion of volumetric textures or peripheral textures or both did not result in any improvements in performance. Conclusions Wavelet-transformed textures outperformed volumetric and/or peripheral textures in the radiomic MRI prediction of pCR to NAC for patients with LABC, which can potentially serve as a surrogate biomarker for the prediction of the response of LABC to NAC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI
    Jiali Zhou
    Jinghui Lu
    Chen Gao
    Jingjing Zeng
    Changyu Zhou
    Xiaobo Lai
    Wenli Cai
    Maosheng Xu
    [J]. BMC Cancer, 20
  • [2] Radiomics for predicting response to neoadjuvant chemotherapy treatment in breast cancer
    Rabinovici-Cohen, Simona
    Tlusty, Tal
    Abutbul, Ami
    Antila, Kari
    Fernandez, Xose
    Rejo, Beatriz Grandal
    Hexter, Efrat
    Cubelos, Oliver Hijano
    Khateeb, Abed
    Pajula, Juha
    Perek, Shaked
    [J]. MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [3] Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer
    Fan, Ming
    Wu, Xilin
    Yu, Jiadong
    Liu, Yueyue
    Wang, Kailang
    Xue, Tailong
    Zeng, Tieyong
    Chen, Shujun
    Li, Lihua
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [4] DCE-MRI radiomics features for predicting breast cancer neoadjuvant therapy response
    Kontopodis, E.
    Manikis, G. C.
    Skepasianos, I.
    Tzagkarakis, K.
    Nikiforaki, K.
    Papadakis, G. Z.
    Maris, T. G.
    Papadaki, E.
    Karantanas, A.
    Marias, K.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 203 - 208
  • [5] Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer
    Zeng, Qiao
    Xiong, Fei
    Liu, Lan
    Zhong, Linhua
    Cai, Fengqin
    Zeng, Xianjun
    [J]. ACADEMIC RADIOLOGY, 2023, 30 : S38 - S49
  • [6] Value of radiomics based on CE- MRI for predicting the efficacy of neoadjuvant chemotherapy in invasive breast cancer
    LI, Qin
    Huang, Yan
    Xiao, Qin
    Duan, Shaofeng
    Wang, Simin
    LI, Jianwei
    Niu, Qingliang
    Gu, Yajia
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1139):
  • [7] Breast MRI radiomics for the pretreatment prediction of response to neoadjuvant chemotherapy in node-positive breast cancer patients
    Drukker, Karen
    Edwards, Alexandra
    Doyle, Christopher
    Papaioannou, John
    Kulkarni, Kirti
    Giger, Maryellen L.
    [J]. JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [8] Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer
    L. M. Janssen
    M. H. A. Janse
    B. B. L. Penning de Vries
    B. H. M. van der Velden
    E. J. M. Wolters-van der Ben
    S. M. van den Bosch
    A. Sartori
    C. Jovelet
    M. J. Agterof
    D. Ten Bokkel Huinink
    E. W. Bouman-Wammes
    P. J. van Diest
    E. van der Wall
    S. G. Elias
    K. G. A. Gilhuijs
    [J]. npj Breast Cancer, 10
  • [9] Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer
    Janssen, L. M.
    Janse, M. H. A.
    de Vries, B. B. L. Penning
    van der Velden, B. H. M.
    van der ben, E. J. M.
    van den Bosch, S. M.
    Sartori, A.
    Jovelet, C.
    Agterof, M. J.
    Huinink, D. Ten Bokkel
    Bouman-Wammes, E. W.
    van Diest, P. J.
    van der Wall, E.
    Elias, S. G.
    Gilhuijs, K. G. A.
    [J]. NPJ BREAST CANCER, 2024, 10 (01)
  • [10] MRI for monitoring breast cancer response to neoadjuvant chemotherapy
    Pires Novais Dias, L.
    Ribeiro, J.
    Batista, E.
    Pinto, D.
    Brito, M. J.
    Vasconcelos, M. A.
    Gouveia, P.
    Sousa, B.
    Volovat, S.
    Chumbo, M.
    Mavioso, C. M.
    Freitas Melro Braghiroli, O.
    Possanzini, M.
    Hernandez, J.
    Alves, C.
    Cardoso, M. J.
    Cardoso, F.
    [J]. EUROPEAN JOURNAL OF CANCER, 2018, 92 : S158 - S159