Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer

被引:4
|
作者
Janssen, L. M. [1 ]
Janse, M. H. A. [1 ]
de Vries, B. B. L. Penning [2 ]
van der Velden, B. H. M. [1 ]
van der ben, E. J. M. [3 ]
van den Bosch, S. M. [4 ]
Sartori, A. [5 ]
Jovelet, C. [6 ]
Agterof, M. J. [7 ]
Huinink, D. Ten Bokkel [8 ]
Bouman-Wammes, E. W. [9 ]
van Diest, P. J. [10 ]
van der Wall, E. [11 ]
Elias, S. G. [2 ]
Gilhuijs, K. G. A. [1 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht Univ, Utrecht, Netherlands
[2] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[3] St Antonius Hosp, Dept Radiol, Nieuwegein, Netherlands
[4] Philips Res, Eindhoven, Netherlands
[5] Agena Biosci GmbH, Hamburg, Germany
[6] Stilla Technol, Villejuif, France
[7] St Antonius Hosp, Dept Med Oncol, Nieuwegein, Netherlands
[8] Alexander Monro Hosp, Dept Med Oncol, Bilthoven, Netherlands
[9] Albert Schweitzer Hosp, Dept Med Oncol, Dordrecht, Netherlands
[10] Univ Utrecht, Univ Med Ctr Utrecht, Dept Pathol, Utrecht, Netherlands
[11] Univ Utrecht, Univ Med Ctr Utrecht, Dept Med Oncol, Utrecht, Netherlands
基金
欧盟地平线“2020”;
关键词
CIRCULATING TUMOR DNA; CELL-FREE DNA; SYSTEMIC THERAPY; METHYLATION; WOMEN; METAANALYSIS; DIAGNOSIS; SURGERY; SERUM;
D O I
10.1038/s41523-024-00611-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Accurate prediction of response to neoadjuvant chemotherapy (NAC) can help tailor treatment to individual patients' needs. Little is known about the combination of liquid biopsies and computer extracted features from multiparametric magnetic resonance imaging (MRI) for the prediction of NAC response in breast cancer. Here, we report on a prospective study with the aim to explore the predictive potential of this combination in adjunct to standard clinical and pathological information before, during and after NAC. The study was performed in four Dutch hospitals. Patients without metastases treated with NAC underwent 3 T multiparametric MRI scans before, during and after NAC. Liquid biopsies were obtained before every chemotherapy cycle and before surgery. Prediction models were developed using penalized linear regression to forecast residual cancer burden after NAC and evaluated for pathologic complete response (pCR) using leave-one-out-cross-validation (LOOCV). Sixty-one patients were included. Twenty-three patients (38%) achieved pCR. Most prediction models yielded the highest estimated LOOCV area under the curve (AUC) at the post-treatment timepoint. A clinical-only model including tumor grade, nodal status and receptor subtype yielded an estimated LOOCV AUC for pCR of 0.76, which increased to 0.82 by incorporating post-treatment radiological MRI assessment (i.e., the "clinical-radiological" model). The estimated LOOCV AUC was 0.84 after incorporation of computer-extracted MRI features, and 0.85 when liquid biopsy information was added instead of the radiological MRI assessment. Adding liquid biopsy information to the clinical-radiological resulted in an estimated LOOCV AUC of 0.86. In conclusion, inclusion of liquid biopsy-derived markers in clinical-radiological prediction models may have potential to improve prediction of pCR after NAC in breast cancer.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer
    L. M. Janssen
    M. H. A. Janse
    B. B. L. Penning de Vries
    B. H. M. van der Velden
    E. J. M. Wolters-van der Ben
    S. M. van den Bosch
    A. Sartori
    C. Jovelet
    M. J. Agterof
    D. Ten Bokkel Huinink
    E. W. Bouman-Wammes
    P. J. van Diest
    E. van der Wall
    S. G. Elias
    K. G. A. Gilhuijs
    [J]. npj Breast Cancer, 10
  • [2] Predicting pathologic response to neoadjuvant chemotherapy in patients with locally advanced breast cancer using multiparametric MRI
    Lu, Nannan
    Dong, Jie
    Fang, Xin
    Wang, Lufang
    Jia, Wei
    Zhou, Qiong
    Wang, Lingyu
    Wei, Jie
    Pan, Yueyin
    Han, Xinghua
    [J]. BMC MEDICAL IMAGING, 2021, 21 (01)
  • [3] Predicting pathologic response to neoadjuvant chemotherapy in patients with locally advanced breast cancer using multiparametric MRI
    Nannan Lu
    Jie Dong
    Xin Fang
    Lufang Wang
    Wei Jia
    Qiong Zhou
    Lingyu Wang
    Jie Wei
    Yueyin Pan
    Xinghua Han
    [J]. BMC Medical Imaging, 21
  • [4] Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer
    Fan, Ming
    Wu, Xilin
    Yu, Jiadong
    Liu, Yueyue
    Wang, Kailang
    Xue, Tailong
    Zeng, Tieyong
    Chen, Shujun
    Li, Lihua
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [5] Development of a multiparametric model for predicting the response to neoadjuvant chemotherapy in breast cancer
    Qian, Fusheng
    Mao, Yajing
    Dong, Jie
    Xie, Feiyue
    Fang, Xin
    Zhang, Qian
    Xia, Panpan
    Han, Xinghua
    Lu, Nannan
    [J]. TRANSLATIONAL CANCER RESEARCH, 2024, 13 (02) : 558 - 568
  • [6] Combining MRI and liquid biopsies for prediction of response to neoadjuvant chemotherapy in early stage breast cancer: The LIMA study
    Janssen, Liselore Maria
    Suelmann, Britt Berendine Maria
    Janse, Markus Hendrik Adriaan
    Elias, Sjoerd Geert
    van Diest, Paul J.
    Veldhuis, Wouter Bernard
    van der Wall, Elsken
    Gilhuijs, Kenneth George Antonius
    [J]. CANCER RESEARCH, 2020, 80 (04)
  • [7] Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients
    Nathalie A. Hottat
    Dominique A. Badr
    Sophie Lecomte
    Tatiana Besse-Hammer
    Jacques C. Jani
    Mieke M. Cannie
    [J]. Scientific Reports, 13 (1)
  • [8] Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients
    Hottat, Nathalie A.
    Badr, Dominique A.
    Lecomte, Sophie
    Besse-Hammer, Tatiana
    Jani, Jacques C.
    Cannie, Mieke M.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [9] Usefulness of PET/MRI in predicting complete response in breast cancer patients treated with neoadjuvant chemotherapy
    Sekine, Chikako
    [J]. CANCER RESEARCH, 2020, 80 (04)
  • [10] Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge
    Li, Wen
    Partridge, Savannah C.
    Newitt, David C.
    Steingrimsson, Jon
    Marques, Helga S.
    Bolan, Patrick J.
    Hirano, Michael
    Bearce, Benjamin Aaron
    Kalpathy-Cramer, Jayashree
    Boss, Michael A.
    Teng, Xinzhi
    Zhang, Jiang
    Cai, Jing
    Kontos, Despina
    Cohen, Eric A.
    Mankowski, Walter C.
    Liu, Michael
    Ha, Richard
    Pellicer-Valero, Oscar J.
    Maier-Hein, Klaus
    Rabinovici-Cohen, Simona
    Tlusty, Tal
    Ozery-Flato, Michal
    Parekh, Vishwa S.
    Jacobs, Michael A.
    Yan, Ran
    Sung, Kyunghyun
    Kazerouni, Anum S.
    Dicarlo, Julie C.
    Yankeelov, Thomas E.
    Chenevert, Thomas L.
    Hylton, Nola M.
    [J]. RADIOLOGY-IMAGING CANCER, 2024, 6 (01):