Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge

被引:4
|
作者
Li, Wen [1 ]
Partridge, Savannah C. [2 ]
Newitt, David C. [1 ]
Steingrimsson, Jon [3 ]
Marques, Helga S. [3 ]
Bolan, Patrick J. [4 ]
Hirano, Michael [2 ]
Bearce, Benjamin Aaron [5 ]
Kalpathy-Cramer, Jayashree [5 ]
Boss, Michael A. [6 ]
Teng, Xinzhi [7 ]
Zhang, Jiang [7 ]
Cai, Jing [7 ]
Kontos, Despina [8 ]
Cohen, Eric A. [8 ]
Mankowski, Walter C. [8 ]
Liu, Michael [9 ]
Ha, Richard [9 ]
Pellicer-Valero, Oscar J. [10 ]
Maier-Hein, Klaus [10 ,11 ]
Rabinovici-Cohen, Simona [12 ]
Tlusty, Tal [12 ]
Ozery-Flato, Michal [12 ]
Parekh, Vishwa S. [13 ,14 ,15 ]
Jacobs, Michael A. [15 ,16 ]
Yan, Ran [17 ,18 ]
Sung, Kyunghyun [17 ,18 ]
Kazerouni, Anum S. [2 ]
Dicarlo, Julie C. [19 ,23 ]
Yankeelov, Thomas E. [19 ,20 ,21 ,22 ,23 ,24 ]
Chenevert, Thomas L. [25 ]
Hylton, Nola M. [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA USA
[2] Univ Washington, Fred Hutchinson Canc Ctr, Dept Radiol, 1100 Fairview Ave N, Seattle, WA 98109 USA
[3] Brown Univ, Ctr Stat Sci, Providence, RI USA
[4] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN USA
[5] Harvard Univ, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[6] Amer Coll Radiol, Ctr Res & Innovat, Philadelphia, PA USA
[7] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hung Hom, Kowloon, Hong Kong, Peoples R China
[8] Univ Penn, Dept Radiol, Philadelphia, PA USA
[9] Columbia Univ, Dept Radiol, Med Ctr, New York, NY USA
[10] German Canc Res Ctr, Div Med Image Comp, Heidelberg, Germany
[11] Heidelberg Univ Hosp, Dept Radiat Oncol, Heidelberg, Germany
[12] Haifa Univ Campus, IBM Res Israel, Mt Carmel, Haifa, Israel
[13] Univ Maryland, Univ Maryland Med Intelligent Imaging UM2ii Ctr, Sch Med, Baltimore, MD USA
[14] Univ Maryland, Dept Diagnost Radiol & Nucl Med, Sch Med, Baltimore, MD USA
[15] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[16] UT Hlth Houston, Dept Diagnost & Intervent Imaging, Houston, TX USA
[17] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA USA
[18] Univ Calif Los Angeles, Henry Samueli Sch Engn, Dept Bioengn, Los Angeles, CA USA
[19] Univ Texas Austin, Livestrong Canc Inst, Austin, TX USA
[20] Univ Texas Austin, Dept Biomed Engn, Austin, TX USA
[21] Univ Texas Austin, Dept Diagnost Med, Austin, TX USA
[22] Univ Texas Austin, Dept Oncol, Austin, TX USA
[23] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX USA
[24] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX USA
[25] Univ Michigan, Dept Radiol, Ann Arbor, MI USA
来源
RADIOLOGY-IMAGING CANCER | 2024年 / 6卷 / 01期
基金
美国国家卫生研究院;
关键词
MRI; Breast; Tumor Response; ALGORITHMS;
D O I
10.1148/rycan.230033
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods: The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image -based markers derived from multiparametric breast MRI, including diffusion -weighted imaging (DWI) and dynamic contrast -enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [+/- SD], 48.9 years +/- 10.56) in the I -SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results: Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion: The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer
    Bian, Tiantian
    Wu, Zengjie
    Lin, Qing
    Wang, Haibo
    Ge, Yaqiong
    Duan, Shaofeng
    Fu, Guangming
    Cui, Chunxiao
    Su, Xiaohui
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115):
  • [2] Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study
    Liu, Zhenyu
    Li, Zhuolin
    Qu, Jinrong
    Zhang, Renzhi
    Zhou, Xuezhi
    Li, Longfei
    Sun, Kai
    Tang, Zhenchao
    Jiang, Hui
    Li, Hailiang
    Xiong, Qianqian
    Ding, Yingying
    Zhao, Xinming
    Wang, Kun
    Liu, Zaiyi
    Tian, Jie
    [J]. CLINICAL CANCER RESEARCH, 2019, 25 (12) : 3538 - 3547
  • [3] Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer
    L. M. Janssen
    M. H. A. Janse
    B. B. L. Penning de Vries
    B. H. M. van der Velden
    E. J. M. Wolters-van der Ben
    S. M. van den Bosch
    A. Sartori
    C. Jovelet
    M. J. Agterof
    D. Ten Bokkel Huinink
    E. W. Bouman-Wammes
    P. J. van Diest
    E. van der Wall
    S. G. Elias
    K. G. A. Gilhuijs
    [J]. npj Breast Cancer, 10
  • [4] Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer
    Janssen, L. M.
    Janse, M. H. A.
    de Vries, B. B. L. Penning
    van der Velden, B. H. M.
    van der ben, E. J. M.
    van den Bosch, S. M.
    Sartori, A.
    Jovelet, C.
    Agterof, M. J.
    Huinink, D. Ten Bokkel
    Bouman-Wammes, E. W.
    van Diest, P. J.
    van der Wall, E.
    Elias, S. G.
    Gilhuijs, K. G. A.
    [J]. NPJ BREAST CANCER, 2024, 10 (01)
  • [5] Prediction of neoadjuvant chemotherapy response in breast cancer
    Izquierdo, M.
    Rodriguez, I.
    Tresserra, F.
    Baulies, S.
    Ara, C.
    Fabregas, R.
    [J]. BREAST, 2017, 32 : S79 - S79
  • [6] Prediction of neoadjuvant chemotherapy response in breast cancer
    Izquierdo, M.
    Rodriguez, I.
    Tresserra, F.
    Maria, G.
    Baulies, S.
    Ara, C.
    Fabregas, R.
    [J]. EUROPEAN JOURNAL OF CANCER, 2018, 92 : S95 - S95
  • [7] PREDICTION OF NEOADJUVANT CHEMOTHERAPY RESPONSE IN BREAST CANCER
    Myllys, Maiju
    [J]. EXCLI JOURNAL, 2021, 20 : 625 - 627
  • [8] MRI and Prediction of Pathologic Complete Response in the Breast and Axilla after Neoadjuvant Chemotherapy for Breast Cancer
    Weber, Joseph J.
    Jochelson, Maxine S.
    Eaton, Anne
    Zabor, Emily C.
    Barrio, Andrea V.
    Gemignani, Mary L.
    Pilewskie, Melissa
    Van Zee, Kimberly J.
    Morrow, Monica
    El-Tamer, Mahmoud
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2017, 225 (06) : 740 - 746
  • [9] Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer
    Fan, Ming
    Wu, Xilin
    Yu, Jiadong
    Liu, Yueyue
    Wang, Kailang
    Xue, Tailong
    Zeng, Tieyong
    Chen, Shujun
    Li, Lihua
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [10] MRI for monitoring breast cancer response to neoadjuvant chemotherapy
    Pires Novais Dias, L.
    Ribeiro, J.
    Batista, E.
    Pinto, D.
    Brito, M. J.
    Vasconcelos, M. A.
    Gouveia, P.
    Sousa, B.
    Volovat, S.
    Chumbo, M.
    Mavioso, C. M.
    Freitas Melro Braghiroli, O.
    Possanzini, M.
    Hernandez, J.
    Alves, C.
    Cardoso, M. J.
    Cardoso, F.
    [J]. EUROPEAN JOURNAL OF CANCER, 2018, 92 : S158 - S159