Optogenetic Analysis of the Function of neural Networks and synaptic Transmission in Caenorhabditis elegans

被引:0
|
作者
Gottschalk, Alexander [1 ]
机构
[1] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany
来源
NEUROFORUM | 2014年 / 20卷 / 04期
关键词
Channelrhodopsin; Halorhodopsin; neural circuits; behavior; synaptic transmission; BEHAVIOR; CIRCUITS;
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The transparent nematode Caenorhabditis elegans with its anatomically well-defined nervous system of 302 neurons that regulate quantifiable behaviors, is an ideal model system for the development and application of optogenetic methods. Optogenetically modified neurons can be acutely excited or inhibited by light, and the effects on a distinct behavior can be observed. Special lighting systems allow the manipulation of several nerve cells that act as "nodes" of small neural circuits, with different colors of light, so as to control different optogenetic tools. In addition, genetically encoded optical sensors for neuronal activity allow drawing conclusions even when the optogenetic intervention causes no obvious behavioral change. The stimulation of quantifiable behaviors allows analyzing the function of genes that are necessary in the corresponding neuron for encoding or amplification of the primary signal. Finally, following optogenetic stimulation, also the function of chemical synapses and their proteins can be analyzed by electrophysiology or electron microscopy.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [31] Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans
    Khan, Liakot A.
    Bauer, Peter O.
    Miyazaki, Haruko
    Lindenberg, Katrin S.
    Landwehrmeyer, Bernhard G.
    Nukina, Nobuyuki
    [J]. JOURNAL OF NEUROCHEMISTRY, 2006, 98 (02) : 576 - 587
  • [32] Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans
    Mahoney, Timothy R.
    Liu, Qiang
    Itoh, Takashi
    Luo, Shuo
    Hadwiger, Gayla
    Vincent, Rose
    Wang, Zhao-Wen
    Fukuda, Mitsunori
    Nonet, Michael L.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (06) : 2617 - 2625
  • [33] Neural Regeneration in Caenorhabditis elegans
    El Bejjani, Rachid
    Hammarlund, Marc
    [J]. ANNUAL REVIEW OF GENETICS, VOL 46, 2012, 46 : 499 - 513
  • [34] A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans
    Dunn, NA
    Lockery, SR
    Pierce-Shimomura, JT
    Conery, JS
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2004, 17 (02) : 137 - 147
  • [35] A Neural Network Model of Chemotaxis Predicts Functions of Synaptic Connections in the Nematode Caenorhabditis elegans
    Nathan A. Dunn
    Shawn R. Lockery
    Jonathan T. Pierce-Shimomura
    John S. Conery
    [J]. Journal of Computational Neuroscience, 2004, 17 : 137 - 147
  • [36] Using Convolutional Neural Networks to Measure the Physiological Age of Caenorhabditis elegans
    Lin, Jiunn-Liang
    Kuo, Wei-Liang
    Huang, Yi-Hao
    Jong, Tai-Lang
    Hsu, Ao-Lin
    Hsu, Wen-Hsing
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2724 - 2732
  • [37] Genetic analysis of RGS protein function in Caenorhabditis elegans
    Chase, DL
    Koelle, MR
    [J]. REGULATORS OF G-PROTEIN SIGNALING, PART A, 2004, 389 : 305 - 320
  • [38] Presenilin function in Caenorhabditis elegans
    Smialowska, Agata
    Baumeister, Ralf
    [J]. NEURODEGENERATIVE DISEASES, 2006, 3 (4-5) : 227 - 232
  • [39] The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development
    Jin, YS
    Jorgensen, E
    Hartwieg, E
    Horvitz, HR
    [J]. JOURNAL OF NEUROSCIENCE, 1999, 19 (02): : 539 - 548
  • [40] Evolution and Analysis of Minimal Neural Circuits for Klinotaxis in Caenorhabditis elegans
    Izquierdo, Eduardo J.
    Lockery, Shawn R.
    [J]. JOURNAL OF NEUROSCIENCE, 2010, 30 (39): : 12908 - 12917