On the noise sensitivity of monotone functions

被引:27
|
作者
Mossel, E [1 ]
O'Donnell, R
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1002/rsa.10097
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It is known that for all monotone functions f : {0, 1}" --> {0, 1}, if x is an element of {0, 1}" is chosen uniformly at random and y is obtained from x by flipping each of the bits of x independently with probability epsilon = n(-alpha), then P[f(x) not equal f(y)] < cn(-alpha+1/2), for some c > 0. Previously, the best construction of monotone functions satisfying P[f(n)(x) not equal f(n)(y)] greater than or equal to delta, where 0 < delta < 1/2, requiredepsilon greater than or equal to c(delta)n(-alpha), where alpha = 1 - ln 2/ln 3 = 0.36907(...), and c(delta) > 0. We improve this result by achieving for every 0 < delta < 1/2, P[f(n)(x) not equal f(n)(y)] greater than or equal to delta, with: epsilon = c(delta)n(-alpha) for any alpha < 1/2, using the recursive majority function with arity k = k(alpha); epsilon = c(delta)n(-1/2)log'n for t = log(2)rootpi/2 =.3257(...), using an explicit recursive majority function with increasing arities; and epsilon = c(delta)n(-1/2), nonconstructively, following a probabilistic CNF construction due to Tala-grand. We also study the problem of achieving the best dependence on delta in the case that the noise rate e is at least a small constant; the results we obtain are tight to within logarithmic factors. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:333 / 350
页数:18
相关论文
共 50 条
  • [1] On the noise sensitivity of monotone functions
    Mossel, E
    O'Donnell, R
    [J]. MATHEMATICS AND COMPUTER SCIENCE II: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2002, : 481 - 495
  • [2] Pivotality versus noise stability for monotone transitive functions
    Galicza, Pal
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25
  • [3] AVERAGE SENSITIVITY AND NOISE SENSITIVITY OF POLYNOMIAL THRESHOLD FUNCTIONS
    Diakonikolas, Ilias
    Raghavendra, Prasad
    Servedio, Rocco A.
    Tan, Li-Yang
    [J]. SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 231 - 253
  • [4] Sensitivity of Seismic Noise Correlation Functions to Global Noise Sources
    Sager, Korbinian
    Boehm, Christian
    Ermert, Laura
    Krischer, Lion
    Fichtner, Andreas
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (08) : 6911 - 6921
  • [5] Bounding the Average Sensitivity and Noise Sensitivity of Polynomial Threshold Functions
    Diakonikolas, Ilias
    Harsha, Prahladh
    Klivans, Adam
    Meka, Raghu
    Raghavendra, Prasad
    Servedio, Rocco A.
    Tan, Li-Yang
    [J]. STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 533 - 542
  • [6] Noise sensitivity of Boolean functions and applications to percolation
    Benjamini I.
    Kalai G.
    Schramm O.
    [J]. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 1999, 90 (1): : 5 - 43
  • [7] NOISE SENSITIVITY OF BOOLEAN FUNCTIONS AND APPLICATIONS TO PERCOLATION
    Benjamini, Itai
    Kalai, Gil
    Schramm, Oded
    [J]. PUBLICATIONS MATHEMATIQUES, 1999, (90): : 5 - 43
  • [8] MONOTONE FUNCTIONS AND CONVEX FUNCTIONS
    NISHIURA, T
    SCHNITZE.F
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1965, 12 (04) : 481 - &
  • [9] Boolean Functions with Biased Inputs: Approximation and Noise Sensitivity
    Heidari, Mohsen
    Pradhan, S. Sandeep
    Venkataramanan, Ramji
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1192 - 1196
  • [10] Monotone circuits for monotone weighted threshold functions
    Beimel, A
    Weinreb, E
    [J]. INFORMATION PROCESSING LETTERS, 2006, 97 (01) : 12 - 18