NOISE SENSITIVITY OF BOOLEAN FUNCTIONS AND APPLICATIONS TO PERCOLATION

被引:0
|
作者
Benjamini, Itai [1 ]
Kalai, Gil [2 ]
Schramm, Oded [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, IL-91904 Jerusalem, Israel
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions arts shown to be noise-stable. Several necessary, and sufficient conditions for noise sensitivity and stability are given. Consider, for example, bond percolation on an n + 1 by n grid. A configuration is a function that assigns to every edge the value 0 or I. Let to be a random configuration, selected according to the uniform measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges e with omega(e)= 1. By duality, the probability for having a crossing is 1/2. Fix an epsilon is an element of (0, 1). For each edge e, let omega'(e)= omega(e) with probability 1-epsilon, and omega'(e)= 1- omega(e) with probability epsilon, independently of the other edges. Let p(tau) be the probability for having a crossing in omega, conditioned on omega' = tau. Then for all n sufficiently large, P{tau: |p(tau) - 1/2} > epsilon} < epsilon.
引用
收藏
页码:5 / 43
页数:39
相关论文
共 50 条
  • [1] Noise sensitivity of Boolean functions and applications to percolation
    Benjamini I.
    Kalai G.
    Schramm O.
    [J]. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 1999, 90 (1): : 5 - 43
  • [2] Boolean Functions with Biased Inputs: Approximation and Noise Sensitivity
    Heidari, Mohsen
    Pradhan, S. Sandeep
    Venkataramanan, Ramji
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1192 - 1196
  • [3] On the Noise Sensitivity and Mutual Information of (Nested-) Canalizing Boolean Functions
    Klotz, Johannes Georg
    Bossert, Martin
    Schober, Steffen
    [J]. 2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [4] On the sensitivity to noise of a Boolean function
    Matache, Mihaela T.
    Matache, Valentin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [5] Noise sensitivity and Voronoi percolation
    Ahlberg, Daniel
    Baldasso, Rangel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [6] NOISE SENSITIVITY IN CONTINUUM PERCOLATION
    Ahlberg, Daniel
    Broman, Erik
    Griffiths, Simon
    Morris, Robert
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) : 847 - 899
  • [7] Noise sensitivity in continuum percolation
    Daniel Ahlberg
    Erik Broman
    Simon Griffiths
    Robert Morris
    [J]. Israel Journal of Mathematics, 2014, 201 : 847 - 899
  • [8] Exclusion sensitivity of Boolean functions
    Broman, Erik I.
    Garban, Christophe
    Steif, Jeffrey E.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (3-4) : 621 - 663
  • [9] A SENSITIVITY ESTIMATE FOR BOOLEAN FUNCTIONS
    BRYC, W
    SMOLENSKI, W
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (05) : 45 - 51
  • [10] Exclusion sensitivity of Boolean functions
    Erik I. Broman
    Christophe Garban
    Jeffrey E. Steif
    [J]. Probability Theory and Related Fields, 2013, 155 : 621 - 663