Transport behavior of atomic layer deposition precursors through polymer masking layers: Influence on area selective atomic layer deposition

被引:65
|
作者
Sinha, Ashwini [1 ]
Hess, Dennis W. [1 ]
Henderson, Clifford L. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
来源
关键词
D O I
10.1116/1.2782546
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sorption and diffusion of precursors through polymer layers were considered as limitations to the successful implementation of a polymer film-based masking approach to area selective atomic layer deposition techniques (ASALDT). Quartz crystal microbalance studies were used to estimate solubility and diffusivity of ALD precursors through supported thin polymer films at elevated temperatures. Specifically, measurements have been performed to estimate the solubility of water in polyhydroxystyrene, polymethylmethacrylate (PMMA), and hexafluoroisopropylalcohol polynorbornene. In addition, diffusion coefficients and solubilities of titanium tetrachloride (TiCl4) and titanium isopropoxide [Ti(ipr)(4)] through PMMA have also been determined. The results suggest that polymer films exhibit insignificant water uptake at high temperature (similar to 160 degrees C) and, hence, sorption of water into polymer films does not pose limitations to polymer masking-based ASALDT. Diffusion coefficient measurements of metal precursors account for the role of precursor size in determining the minimum polymer masking layer thickness for a successful ASALDT process. (C) 2007 American Vacuum Society.
引用
收藏
页码:1721 / 1728
页数:8
相关论文
共 50 条
  • [31] Atomic Layer Deposition
    Wang, SQ
    Sneh, O
    Londergan, A
    Clark-Phelps, B
    Lee, E
    Seidel, T
    SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2001, : 364 - 364
  • [32] Inherently Selective Atomic Layer Deposition and Applications
    Cao, Kun
    Cai, Jiaming
    Chen, Rong
    CHEMISTRY OF MATERIALS, 2020, 32 (06) : 2195 - 2207
  • [33] Role of Precursor Choice on Area-Selective Atomic Layer Deposition
    Oh, Il-Kwon
    Sandoval, Tania E.
    Liu, Tzu-Ling
    Richey, Nathaniel E.
    Bent, Stacey F.
    CHEMISTRY OF MATERIALS, 2021, 33 (11) : 3926 - 3935
  • [34] Nanometer spaced electrodes using selective area atomic layer deposition
    Gupta, R.
    Willis, B. G.
    APPLIED PHYSICS LETTERS, 2007, 90 (25)
  • [35] Theoretical Design Strategies for Area-Selective Atomic Layer Deposition
    Kim, Miso
    Kim, Jiwon
    Kwon, Sujin
    Lee, Soo Hyun
    Eom, Hyobin
    Shong, Bonggeun
    CHEMISTRY OF MATERIALS, 2024, 36 (11) : 5313 - 5324
  • [36] New approaches for area-selective atomic layer deposition of oxides
    Mackus, Adrie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [37] Area-Selective Atomic Layer Deposition: Role of Surface Chemistry
    Mameli, A.
    Karasulu, B.
    Verheijen, M. A.
    Mackus, A. J. M.
    Kessels, W. M. M.
    Roozeboom, F.
    ATOMIC LAYER DEPOSITION APPLICATIONS 13, 2017, 80 (03): : 39 - 48
  • [38] Area-selective atomic layer deposition enabled by competitive adsorption
    Suh, Taewon
    Yang, Yan
    Sohn, Hae Won
    DiStasio, Robert A., Jr.
    Engstrom, James R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06):
  • [39] Atomic layer deposition of metals: Precursors and film growth
    Hagen, D. J.
    Pemble, M. E.
    Karppinen, M.
    APPLIED PHYSICS REVIEWS, 2019, 6 (04):
  • [40] Dopamine-Mediated Polymer Coating Facilitates Area-Selective Atomic Layer Deposition
    Papananou, Hellen
    Katsumata, Reika
    Neary, Zachary
    Goh, Rubayn
    Meng, Xiangxi
    Limary, Ratchana
    Segalman, Rachel A.
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (10) : 4924 - 4931