Improved sample complexity estimates for statistical learning control of uncertain systems

被引:46
|
作者
Koltchinskii, V [1 ]
Abdallah, CT
Ariola, M
Dorato, P
Panchenko, D
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept EECE, Albuquerque, NM 87131 USA
[3] Univ Naples Federico 2, Dipartimento Informat & Sistemist, Naples, Italy
基金
美国国家科学基金会;
关键词
decidability theory; NP-hard problems; Radamacher bootstrap; robust control; sample complexity; statistical learning;
D O I
10.1109/9.895579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
sRecently, probabilistic methods and statistical learning theory have been shown to provide approximate solutions to "difficult" control problems. Unfortunately, the number of samples required in order to guarantee stringent performance levels may he prohibitively large. This paper Introduces bootstrap learning methods and the concept of stopping times to drastically reduce the bound on the number of samples required to achieve a performance level. We then apply these results to obtain more efficient algorithms which probabilistically guarantee stability and robustness levels when designing controllers for uncertain systems.
引用
收藏
页码:2383 / 2388
页数:6
相关论文
共 50 条
  • [21] Statistical learning methods in linear algebra and control problems: the example of finite-time control of uncertain linear systems
    Abdallah, CT
    Amato, F
    Ariola, M
    Dorato, P
    Koltchinskii, V
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 11 - 26
  • [22] COMPLEXITY OF STATISTICAL SYSTEMS
    IUDIN, AD
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 266 (05): : 1073 - 1076
  • [23] Computation of robust control invariant sets with predefined complexity for uncertain systems
    Gupta, Ankit
    Koroglu, Hakan
    Falcone, Paolo
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (05) : 1674 - 1688
  • [24] Sample Complexity of Networked Control Systems over Unknown Channels
    Gatsis, Konstantinos
    Pappas, George J.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 6067 - 6072
  • [25] Iterative Learning Control for Actuator Fault Uncertain Systems
    Wang, Lei
    Dong, Liangxin
    Chen, Yiyang
    Wang, Keqing
    Gao, Feng
    [J]. SYMMETRY-BASEL, 2022, 14 (10):
  • [26] Noncausal iterative learning control for uncertain LTI systems
    Goldsmith, PB
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS 2003, VOL 1-3, 2003, : 293 - 298
  • [27] Reinforcement learning for control design of uncertain polytopic systems
    Oliveira, Pedro M.
    Palma, Jonathan M.
    Nepomuceno, Erivelton G.
    Lacerda, Marcio J.
    [J]. INFORMATION SCIENCES, 2023, 625 : 417 - 429
  • [28] Adaptive iterative learning control of uncertain robotic systems
    Choi, JY
    Lee, JS
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2000, 147 (02): : 217 - 223
  • [29] Composite Learning Fuzzy Control of Uncertain Nonlinear Systems
    Yongping Pan
    Meng Joo Er
    Yiqi Liu
    Lin Pan
    Haoyong Yu
    [J]. International Journal of Fuzzy Systems, 2016, 18 : 990 - 998
  • [30] Robust Iterative Learning Control for Nonrepetitive Uncertain Systems
    Meng, Deyuan
    Moore, Kevin L.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 907 - 913